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Introduction

My appreciation for econometrics grew out of my interest in
trying to figure out how the world works. I discovered that
empirical techniques tailored to specific circumstances could
help explain all sorts of economic outcomes. As I came to
understand how the theoretical structure of economics
combines with information contained in real-world data, I
began to see observed phenomena in a different light. I’d
often ask myself questions about my observations. Could I
determine whether the outcomes were random and simply
appeared to be related? If I believed that two or more things I
observed had a logical connection, could I use data to test my
assertions? Increasingly, I found myself relying on the tools
of econometrics to answer these types of questions.

I’ve written Econometrics For Dummies to help you get the
most out of your economics education. By now, your classes
have taught you some economic theory, but you’re craving
more precision in the predicted outcomes of those theories.
Perhaps you’re even questioning whether the theories are
consistent with what you observe in the real world. I find that
one of the most attractive characteristics of properly applied
econometrics is that it’s “school of thought neutral.” In other
words, you can adapt an econometric approach to a variety of
initial assumptions and check the results for consistency. By
using econometrics carefully and conscientiously, you can get
the data to speak. But you better learn the language if you
hope to understand what it’s saying!

About This Book
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Econometrics For Dummies provides you with a short and
simple version of a first-semester course in econometrics. I
don’t cite the seminal work or anything from the large
collection of econometric theory papers published in
scholarly journals. The organization of topics may have some
resemblance to traditional econometrics textbooks, but my
goal is to present the material in a more straightforward
manner. Even if you’re taking a second-semester (advanced)
econometrics course or a graduate course, you may find this
book to be a useful, one-stop, nuts-and-bolts resource.

Of course, some technical sophistication is essential in
econometrics. Besides, you’ve taken introductory economics,
statistics, and maybe even intermediate economic theory, so
now you’re ready to show off your technical prowess. But
wait a minute! Sometimes, with all the technical skills being
mastered in learning econometrics, students fail to appreciate
the insights from the simplicity. In fact, you may even forget
why you’re approaching a problem with a particular
technique. That’s where this book can help.

Please note that I have tried to remain consistent with my
terminology throughout the book, but econometricians
sometimes have several different words for the same thing.
Also, note that I use the statistical software STATA 12.1
throughout, but sometimes I refer to it simply as econometrics
software or just STATA.

Foolish Assumptions

If you’re following the normal course of action, you take an
econometrics course after you complete courses on principles
of microeconomics, principles of macroeconomics, and
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statistics. In some cases, depending on the school, you may
also be required to complete intermediate economic theory
courses before taking econometrics. I cover the topics in a
way that accommodates some variation in preexisting
knowledge, but I’ve had to make the following assumptions
about you:

You’re a college student taking your first econometrics
class taught in a traditional manner — emphasizing a
combination of theoretical proofs and practical applications.

Or you’re a graduate student (or are taking an advanced
undergraduate econometrics class) and would like to refresh
your memory of basic econometric concepts so you can feel
more comfortable with the transition into advanced material.

You remember basic algebra, principles of economics,
and statistics. I review the concepts from your statistics
course that are most important for econometrics, but I also
assume that a quick overview is all you need to get up to
speed (and you can skip it if you’re ready to dig right in).

Numbers, equations, and Greek letters don’t intimidate
you. I know that on the surface using the so-called dismal
science with quantitative methods isn’t exactly the most
attractive combination of topics. By this point in your studies,
however, I’m sure you’re over the fear people often have at
the mere mention of these subjects.

You’ll be using some econometrics software in your class
and are willing to adapt my examples in STATA to the
software you’re using (although chances are high you’re
using STATA in your class anyway).
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Icons Used in This Book

Throughout the book, you may notice several different icons
along the left margin. I use them to grab your attention and
make the book easier to read. Each icon has an important
function.

If you see this icon, it means I’m applying the
techniques of a particular chapter or section with STATA. I
briefly summarize the data I’m using to produce the output,
show you how to format the data or create the variables
required for the analysis, and point you to the most important
components of the output.

I use this icon to signal that the information that
follows is essential for your success in applying econometric
analysis. To the extent possible, I explain these important,
big-picture ideas in a nontechnical manner. However, keep in
mind that this book is about econometrics, and therefore some
technical sophistication may be required for even the most
basic principles.

This icon appears next to information that’s
interesting but not essential for your understanding of the
main ideas. You’re welcome to skip these paragraphs, but if
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your econometrics class is more theory based (something that
usually depends on the professor’s preferences), you may
need to spend more time with this material.

I use this icon to indicate shortcuts that can save
you time or provide alternative ways of thinking about a
concept.

This icon flags information that helps you steer
away from misconceptions, common pitfalls, and
inappropriate applications of a particular econometric
technique.

Beyond the Book

You may not always have your e-reader or a copy of this
book handy, but I'm guessing you have almost constant access
to the Internet courtesy of a smartphone or tablet. That's why I
include a wealth of accessible-from-anywhere additional
information at www.dummies.com.

In need of some of the most useful formulas in econometrics?
Looking for a breakdown of how you can give your
econometric model some flexibility? Head to
www.dummies.com/cheatsheet/econometrics
to access this book's helpful e-Cheat Sheet, which covers
these topics and more.
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But that's not all. Because econometrics is synonymous with
forecasting in some fields, I've put a bonus chapter online at
www.dummies.com/extras/econometrics. It's
all about helping you hone your forecasting skills so you can
select the right method to predict an outcome based on the
information you have and later vet the accuracy of your
forecast.

Where to Go from Here

Unlike most books, you don’t need to start at the beginning
and read through to the end in order to gain an understanding
of fundamental econometric concepts. Simply turn to the
topic that most interests you. Are you struggling with the
intuition or justification for a particular type of econometric
model? Do you think that a specific econometric tool will
help you reveal more insights from your data? You can find
that topic in the table of contents or the index and then jump
right to it.

Maybe you’re not puzzled and are simply curious about the
various tools econometrics has to offer for data analysis. Feel
free to browse through the chapters. Maybe an interesting
paragraph or a fascinating equation will catch your eye and
give you ideas about approaching a problem — hey, it’s
possible!

If your statistics knowledge is rusty, I recommend you begin
with the first couple chapters. On the other hand, if your
experience with statistics wasn’t a good one, you’d like to
avoid disturbing flashbacks, and you’re confident in your
ability to catch on quickly, then by all means start at any other
point. No matter where you start, you’ll never look at data the
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same way after learning econometrics (for better or for
worse!).
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Part I

Getting Started with Econometrics

For Dummies can help you get started with lots
of subjects. Visit www.dummies.com to learn more and
do more with For Dummies.
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In this part . . .

Get familiar with the approach economists use when
investigating empirical issues — not controlled experiments
that never seem to contradict standard statistical assumptions.

Find out the basic commands you need to work with data
files in STATA 12.1, a popular form of econometric software,
and discover the syntax structure for executing estimation
commands.

Review the probability concepts that are most relevant
for your study of econometrics: topics that focus on the
properties of probability distributions and their use in
calculating descriptive statistics of random variables.

Reinforce your knowledge of statistical inference so you
can be better equipped to use surveys and other forms of
sample data to test your hypotheses and draw conclusions.
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Chapter 1

Econometrics: The Economist’s Approach to Statistical
Analysis

In This Chapter

Discovering the goals of econometric analysis

Understanding the approach and methodology of
econometrics

Getting familiar with econometrics software

Welcome to the study of econometrics! The Econometric
Society, founded in 1930, defines econometrics as a field
based on a “theoretical-quantitative and empirical-quantitative
approach to economic problems.” This mouthful means that,
at times, econometricians are mathematicians and use
complex algorithms and analytical tools to derive various
estimation and testing procedures. At other times,
econometricians are applied economists using the tools
developed by theoretical econometricians to examine
economic phenomena.

In this chapter, you see that a distinguishing feature of
econometrics is its development of techniques designed to
deal with data that aren’t derived from controlled experiments
and, therefore, situations that violate many of the standard
statistical assumptions. You also begin to understand that,
under these circumstances, obtaining good quantitative results
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depends on using reliable and adequate data as well as sound
economic theory.

And because computers and econometric software are now
commonly used in introductory econometrics courses, I also
devote a section of this chapter to introducing basic
commands in STATA (version 12.1), a popular econometrics
software program. This software allows you to immediately
apply theoretical concepts and enhance your understanding of
the material.

Evaluating Economic Relationships

Economics provides the theoretical tools you use to evaluate
economic relationships and make qualitative predictions of
economic phenomena using the ceteris paribus assumption.
You may recall from your previous courses that the ceteris
paribus assumption means that you’re keeping everything
else constant. Two examples among numerous possibilities
are:

In microeconomic theory, you’d expect economic profits
in a competitive market to induce more firms to enter that
market, ceteris paribus.

In macroeconomic theory, you’d expect higher interest
rates to reduce investment spending, ceteris paribus.

Econometrics ties into economic theory by
providing the tools necessary to quantify the qualitative
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statements you (or others) make using theory. Unknown or
assumed relationships from abstract theory can be quantified
using real-world data and the techniques developed by
econometricians.

The following section explains how econometrics helps
characterize the future and describe economic phenomena
quantitatively, and then I clarify why an econometrician must
always make sensible assumptions.

Using economic theory to describe outcomes and make
predictions

One of the characteristics that differentiate applied research in
econometrics from other applications of statistical analysis is
a theoretical structure supporting the empirical work.

Econometrics is typically used to explain how
factors affect some outcome of interest or to predict future
events. Regardless of the primary objective, your econometric
study should be linked to an economic model. Your model
should consist of an outcome of interest (dependent variable,
Y) and causal factors (independent variables, Xs) that are
theoretically or logically connected to the outcome.

Relying on sensible assumptions

A variation of a famous joke about economists goes as
follows: A physicist, a chemist, and an economist are
stranded on an island with nothing to eat. A can of soup
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washes ashore. The physicist says, “Let’s smash the can open
with a rock.” The chemist says, “Let’s build a fire and heat
the can first.” The economist says, “Let’s assume that we
have a can opener. . . .” Despite the joke, making assumptions
about reality can help you construct logical arguments and
predict outcomes when specific preexisting conditions apply.
In econometrics, however, making assumptions without
checking the feasibility of their reality can be dangerous.

Making too many assumptions about preexisting
conditions, functional form, and statistical properties can lead
to biased results and can undermine the estimation accuracy
you’re trying to accomplish. Although you have to make
some assumptions to perform your econometric work, you
should test most of them and be honest about any potential
effects on your results from those you can’t test.

Testing predictions from economic theory or logical
reasoning is rarely a straightforward procedure. Observed
data don’t tend to be generated from a controlled experiment,
so testing economic theory is challenging in econometric
work because of the difficulty in ensuring that the ceteris
paribus (all else constant) assumption holds. Consequently, in
applying econometrics, you need to give considerable
attention to the control (independent) variables you include in
the analysis to simulate (as closely as possible) the ceteris
paribus situation.
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Applying Statistical Methods to Economic Problems

Most econometrics textbooks assume you’ve learned all the
statistics necessary to begin building econometric models,
estimating, and testing hypotheses. However, I’ve discovered
that my students always appreciate a review of the statistical
concepts that are most important to succeeding with
econometrics. Specifically, you need to be comfortable with
probability distributions, the calculation of descriptive
statistics, and hypothesis tests. (If your skills are rusty in these
areas, make sure you read the material in Chapters 2 and 3.)

Your ability to accurately quantify economic relationships
depends not only on your econometric model-building skills
but also on the quality of the data you’re using for analysis
and your capacity to adopt the appropriate strategies for
estimating models that are likely to violate a statistical
assumption. The data must be derived from a reliable
collection process, but you should also be aware of any
additional limitations or challenges. They may include, but
aren’t limited to

Aggregation of data: Information that may have
originated at a household, individual, or firm level is being
measured at a city, county, state, or country level in your data.

Statistically correlated but economically irrelevant
variables: Some datasets contain an abundance of
information, but many of the variables may have nothing to
do with the economic question you’re hoping to address.

Qualitative data: Rich datasets typically include
qualitative variables (geographic information, race, and so
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on), but this information requires special treatment before you
can use it in an econometric model.

Classical linear regression model (CLRM) assumption
failure: The legitimacy of your econometric approach always
rests on a set of statistical assumptions, but you’re likely to
find that at least one of these assumptions doesn’t hold
(meaning it isn’t true for your data).

Econometricians differentiate themselves from
statisticians by emphasizing violations of statistical
assumptions that are often taken for granted. The most
common technique for estimating an econometric model is
ordinary least squares (OLS), which I cover in Chapter 5.
However, as I explain in Chapters 6 and 7, a number of
CLRM assumptions must hold in order for the OLS technique
to provide reliable estimates. In practice, the assumptions that
are most likely to fail depend on your data and specific
application. (In Chapters 10, 11, and 12, you see how to
identify and deal with the most common assumption
violations.)

In the following sections, I describe how familiarity with
certain characteristics of your data can help you build better
econometric models. In particular, you should pay attention to
the structure of your data, the way in which variables are
measured, and how quantitative data can be complemented
with qualitative information.
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Recognizing the importance of data type, frequency, and
aggregation

The data that you use to estimate and test your econometric
model is typically classified into one of three possible types
(for further details on each type, see Chapter 4):

Cross sectional: This type of data consists of
measurements for individual observations (persons,
households, firms, counties, states, countries, or whatever) at
a given point in time.

Time series: This type of data consists of measurements
on one or more variables (such as gross domestic product,
interest rates, or unemployment rates) over time in a given
space (like a specific country or state).

Panel or longitudinal: This type of data consists of a
time series for each cross-sectional unit in the sample. The
data contains measurements for individual observations
(persons, households, firms, counties, states, countries, and so
on) over a period of time (days, months, quarters, or years).

The type of data you’re using may influence how
you estimate your econometric model. In particular,
specialized techniques are usually required to deal with
time-series and panel data. I cover time-series techniques in
Chapter 12, and I discuss panel techniques in Chapters 16 and
17.
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You can anticipate common econometric problems
because certain CLRM assumption failures are more likely
with particular types of data. Two typical cases of CLRM
assumption failures involve heteroskedasticity (which occurs
frequently in models using cross-sectional data) and
autocorrelation (which tends to be present in models using
time-series data). For the full scoop on heteroskedasticity and
autocorrelation, turn to Chapters 11 and 12, respectively.

In addition to knowing the type of data you’re working with,
make sure you’re always aware of the following information:

The level of aggregation used in measuring the
variables: The level of aggregation refers to the unit of
analysis when information is acquired for the data. In other
words, the variable measurements may originate at a lower
level of aggregation (like an individual, household, or firm) or
at a higher level of aggregation (like a city, county, or state).

The frequency with which the data is captured: The
frequency refers to the rate at which measurements are
obtained. Time-series data may be captured at a higher
frequency (like hourly, daily, or weekly) or at lower
frequency (like monthly, quarterly, or yearly).

All the data in the world won’t allow you to
produce convincing results if the level of aggregation or
frequency isn’t appropriate for your problem. For example, if
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you’re interested in determining how spending per pupil
affects academic achievement, state-level data probably won’t
be appropriate because spending and pupil characteristics
have so much variation across cities within states that your
results are likely to be misleading.

Avoiding the data-mining trap

As you acquire more data-analysis tools, you may be inclined
to search the data for relationships between variables. You
can use your knowledge of statistics to find models that fit
your data quite well. However, this practice is known as data
mining, and you don’t want to be seduced by it!

Although data mining can be useful in fields where
the underlying mechanism generating the outcomes isn’t
important, most economists don’t view this approach
favorably. In econometrics, building a model that makes
sense and is reproducible by others is far more important than
searching for a model that has a perfect fit. I reinforce the
importance of building sensible models in Chapter 4 and
provide some specific examples of common economic models
in Chapter 8.

Incorporating quantitative and qualitative information

Economic outcomes can be affected by both quantitative
(numeric) and qualitative (non-numeric) factors. Generally,
quantitative information has a straightforward application and
interpretation in econometric models.
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Qualitative variables are associated with characteristics that
have no natural numeric representation, although your raw
data may code qualitative characteristics with a numeric
value. For example, a U.S. region may be coded with a 1 for
West, 2 for South, 3 for Midwest, and 4 for Northeast.
However, the assignment of the specific values is arbitrary
and carries no special significance. In order to utilize the
information contained in qualitative variables, you’ll usually
convert them into dummy variables — dichotomous variables
that take on a value of 1 if a particular characteristic is present
and 0 otherwise. I illustrate the use of dummy variables as
independent variables in an econometric model in Chapter 9.

Sometimes the economic outcome itself is qualitative or
contains restricted values. For example, your dependent
variable could measure whether or not a firm fails (goes
bankrupt) in a given year using various firm characteristics as
independent variables. Although standard techniques are
sometimes acceptable with qualitative and noncontinuous
dependent variables, usually they result in assumption
violations and require an alternative econometric approach.
Flip to Chapters 13 and 14 to discover the appropriate
techniques for situations when your dependent variable isn’t
continuous.

Using Econometric Software: An Introduction to STATA

Specialized software makes the application of econometric
techniques possible for anyone who’s not a computer
programming genius. Keep in mind that several good
software options are available to you and that, as a good
economist, you should weigh the cost and benefits of each. Of
course, the type of software you ultimately end up working
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with in your introductory econometrics course depends on
what your professor uses for his research or finds to be the
easiest to integrate into the course. I rely on STATA
extensively in my academic research and use it exclusively in
my econometrics courses, but your professor may employ
EVIEWS, SAS, or some other program.

Because I find STATA to be the best software, it’s what I use
exclusively in this book. It provides an excellent combination
of a user-friendly interface, consistent structure in syntax, and
simple commands to implement all the techniques you learn
about in econometrics, and it’s available for a variety of
platforms or operating systems.

STATA can be used as a point-and-click software (like you
would use Excel or most other software these days). With
point-and-click, you can use the icons and menu bar at the top
to execute tasks. However, over time, you’re likely to prefer
using STATA as a command-driven program because it’s
faster and easier. When used in this manner, you perform
tasks by providing STATA with specific syntax on the
command line (using lowercase letters for the commands). In
this chapter, I explain both methods, but in the later chapters,
I rely almost exclusively on the command-driven approach.

The following sections show you some STATA commands
that allow you to get started with the software. (Note that I
introduce STATA commands as needed in other chapters.)
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My coverage of STATA is not exhaustive. The
supporting documentation consists of a User’s Guide and
several Reference manuals (thousands of pages), so clearly I
can’t cover every facet of STATA that you may use in
econometrics. However, if you run into an obstacle, the
manuals are easy to use and provide good examples. With
STATA running on your computer, you also have access to
the Help menu and online documentation.

Getting acquainted with STATA

In this section of the chapter, I show you how to open data
files, log your modifications to data, and save your data files.

Creating and saving STATA datasets

In order to begin doing any exploratory data analysis or
econometric work, you need a dataset that’s in STATA
format (*.dta). If you’re downloading data from an online
source, you may be able to obtain the data in STATA format.
Many econometrics textbooks also give you access to data
files in STATA format. In addition, the STATA program is
preloaded with examples that you can use to familiarize
yourself with the basic commands.

After opening STATA, you can access the sample
datasets by selecting File ⇒ Example Datasets… If you
want to open any other dataset that’s already in STATA
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format, select File ⇒ Open and then choose the file you want
to work with. On the command line, you can open a STATA
dataset by typing “use filename” and hitting return.

If you’re inputting data manually or downloading it in a
non-STATA format, then you can use one of two methods to
read it into STATA:

Select File ⇒ Import: This option can be used if the data
is in Excel, SAS XPORT, or Text format. You select the
appropriate format of your raw data, and then you’re
prompted to select the file you’d like to import into STATA.

Select Data ⇒ Data Editor: This option opens an editor
that resembles a spreadsheet. You can paste columns of data
into the editor or input data manually.

If you import a dataset that wasn’t originally in
STATA format, you need to save the dataset in STATA
format in order to use it again, particularly if you inputted
data through the editor and want to avoid replicating all your
efforts. Also, if you made any changes to an existing STATA
dataset and want to retain those changes, you need to save the
revised dataset. I recommend you select File ⇒ Save As (or
type “save new filename” on the command line) and choose a
new name for the modified file. That way if you accidentally
delete a variable or drop observations, you can always go
back to the original data file.

Viewing data
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Before you begin doing econometric analysis, make sure
you’re familiar with your data. After all, you don’t want to
estimate an econometric model with data that’s mostly
incomplete or full of errors.

In version 12.1 of STATA, the default setting allows you to
open a dataset as large as 64 megabytes (MB) and containing
up to 5,000 variables. If your dataset is larger than 64MB, you
need to increase the memory allocated to STATA by typing
“set memory #m” on the command line, where # is the size of
your dataset in MB. Similarly, if your dataset contains more
than 5,000 variables, you need to type “set maxvar #” on the
command line, with # being the number of variables in your
dataset.

The Data tab in the menu bar contains most of the elements
you need in order to get acquainted with your data. After
opening a STATA dataset, you’ll regularly use the following
commands:

Select Data ⇒ Describe data ⇒ Describe data in
memory or type “describe” on the command line and hit
return: STATA shows you how many observations and
variables are contained in the dataset. In addition, it lists the
names and types (numeric or string) of all the variables.

Select Data ⇒ Describe data ⇒ Summary statistics or
type “summarize” on the command line and hit return: With
this command, STATA provides you with basic descriptive
measures for all the numeric variables in your dataset.
Specifically, you get the number of observations with
nonmissing values, mean, standard deviation, minimum
value, and maximum value for each variable. Note: The string
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variables contain letters, names, or phrases, so no mean or
standard deviation can be calculated for them.

In Figure 1-1, I use the “describe” and “summarize”
commands to view the fundamental characteristics of my
dataset.

The Data tab or “describe” and “summarize”
commands provide the basic information you use for your
econometric analysis. Examine the tables containing the
descriptive information and make sure that all the values are
sensible. In other words, make sure that the minimum,
maximum, and mean values are feasible for each variable in
your dataset.

You can also use the “list” command on occasion,
but be careful with it because it displays the value for every
variable and every observation. In other words, it displays the
entire dataset. With a large dataset (thousands of observations
and dozens of variables), this list isn’t likely to help you find
errors unless you refine the list to a specific observation using
an “if” statement or by subscripting (I discuss this in the later
“Creating new variables” section).
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Figure 1-1: Examining data two ways in STATA.

Keep in mind that the results section of STATA, by default,
displays approximately one page of output. STATA then
prompts you with the “-more-” message. Hitting the return
key allows you to see an additional line of output, and hitting
the spacebar shows another page of output. If you don’t want
STATA to pause for “-more-” messages, type “set more off”
on the command line. Subsequent output is then displayed in
its entirety.

Interpreting error messages
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If you make a mistake with a command, STATA responds
with an error message and code. The error message contains a
brief description of the mistake, and the code has the format
r(#), where # represents some number. Reading the error
message and carefully examining the command that resulted
in the error usually helps you arrive at a solution. If not, the
codes, known as a return codes, are stored in STATA, and
clicking on the code allows you to obtain a more detailed
description of the error.

The outcome of a command can be identified
quickly by looking at the colors of the text in the results area
(the middle portion of STATA’s interface). If you see the
color red, it means something has gone wrong and you should
correct your mistake before moving on.

Stopping STATA

When you occasionally want to terminate a process in
STATA, you can just click the Break button on the toolbar
(right below the menu bar). Stopping STATA may be
appropriate if an estimation procedure doesn’t converge to a
result or you change your mind about the command you’d
like to execute and don’t want to wait until the process is
complete. After you stop STATA, your data remains in
memory, and you can continue with any command.

In Figure 1-2, I use the “list” command to see each
observation in the dataset. However, after I see a few of the
observations, I decide that I don’t need to see more
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observations one by one. I click the Break button to stop the
command.

Preserving your work

Saving your commands and resulting output in a log
file is one of the most essential things you can get into the
habit of doing while using STATA. You can do it by selecting
File ⇒ Log ⇒ Begin… from the menu bar and then
assigning the file a name or by typing “log using filename” on
the command line and hitting return. After you complete the
work you want to save, select File ⇒ Log ⇒ Close or type
“log close” on the command line and hit return. Your log files
are given a .smcl file extension.

Figure 1-2: The break action in STATA.
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In Figure 1-3, I open a log file, execute a “summarize”
command, and close the log file. I can examine the contents
of the log file by selecting File ⇒ View… from the menu bar
and then choosing my log file.

Figure 1-3: Saving log files in STATA.

Using STATA’s viewer, you can always go back to your log
file to see how you modified the data or any statistical
estimates you may have previously calculated. You can also
copy and paste from your log file to any other file, or you can
simply print your log file.
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Don’t forget to close your log file when you’re
done with the work you want to retain. Otherwise, everything
you do in STATA continues to be written to the log file you
opened, which may create an unnecessarily huge file.

Creating new variables

After you compile your data, you’ll likely want to create new
variables for the analysis. Your econometric model may
specify that a variable should be measured in logs, or you
may need to use a squared term for a quadratic function (I
cover these types of econometric models in Chapter 8). Your
data may also contain qualitative variables that you want to
convert into dummy variables (turn to Chapter 9 for guidance
on using dummy variables). These examples are just a couple
of the many instances in which creating a new variable is in
your best interest.

You can create new variables in STATA by
selecting Data ⇒ Create or change data ⇒ Create new
variable from the menu bar or by typing “generate new
variable = exp [if] [in]” on the command line, where new
variable is the name you choose to assign the new variable,
exp specifies how the new variable is created, and the terms in
brackets are optional expressions that can be used to restrict
the subsample over which you’d like to define the new
variable.
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A number of arithmetic, relational, and logical operators have
been programmed into STATA and can be used to create new
variables. You can browse through them in the STATA
manuals or the electronic documentation.

I recommend using the “summarize” command
after you create new variables. Doing so allows you to
confirm that your new variable doesn’t contain errors and that
its values are in line with what you intended.

Estimating, testing, and predicting

After you collect your data and create any additional variables
necessary for analysis, you’re ready to estimate your
econometric model and perform hypothesis tests.

The appropriate estimation technique depends on
the nature of your econometric model. All the model
estimation commands can be found by selecting Statistics
from the menu bar. If you use the command line, you use
similar syntax for all estimation techniques; the syntax is
“command variable1 variable2 . . . [if] [in] [weight] [,
options]” followed by hitting return, where variable1 is the
dependent variable in your model.

In Figure 1-4, I estimate a multiple regression model using a
sample of workers. The natural log of the hourly wage
(lnwage) is my dependent variable, and I use years of work
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experience (ttl_exp), years with the same employer (tenure),
and a dummy variable indicating whether the individual
graduated from college (collgrad) as my independent
variables. I also estimate the same model using the subsample
of nonunionized workers.

Figure 1-4: A STATA regression estimation.

STATA also has a number of postestimation commands for
hypothesis testing, obtaining residuals, and predicting the
dependent variable. You can explore them in the STATA
manuals or electronic documentation. However, throughout
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the book, I also provide several examples of postestimation
commands alongside the relevant econometric model
estimates.
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Chapter 2

Getting the Hang of Probability

In This Chapter

Reviewing the basics of probability theory

Understanding probability density functions for discrete
and continuous random variables

Finding the relationship between two random variables

The purpose of this chapter is to review some fundamental
concepts of probability theory that are essential to moving
forward with your understanding of econometrics. These
topics center on the properties of probability distributions and
their use in calculating descriptive measures of random
variables. Other topics are either less important for
econometrics or are covered as necessary in the relevant
chapters of this book. (If you find that your probability skills
are rustier than you expected, consult Statistics For Dummies
[by Deborah J. Rumsey; John Wiley & Sons, Inc.] and a good
statistics or probability textbook.)

In this chapter you get a refresher on the properties of
probability distributions for both discrete and continuous
random variables. Then you find out how you can use
information from probability distributions to calculate
measures of central tendency, dispersion, and correlation.

Reviewing Random Variables and Probability Distributions
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Because one of the objectives of econometrics is to explain
seemingly random events, the building blocks naturally rely
on some probability theory.

Random events are uncertain outcomes from an
experiment. When you take those outcomes and describe
them numerically, you create random variables. So a random
variable measures something that has an uncertain value.

In economics, you’re typically concerned with outcomes that
have uncertain values. These random variables include things
like output, demand, profit, wages, and so on. The precise
random variable you’re interested in depends on your
problem or research question.

Random variables can be discrete or continuous. A
discrete random variable is one that can be described by
integers (whole numbers), so the outcomes are countable. A
continuous random variable, on the other hand, can have any
real value, so the outcomes are infinite and not countable.

Suppose I’m interested in the number of jobs (full time or part
time) individuals held over the past year, and I obtain this
information for all potential workers. The outcome for each
worker is an integer value, like 0, 1, 2, and so on. Individuals
either had one or more jobs or they had no jobs; no one had a
fraction of a job. Because the outcomes are countable whole
numbers, this problem uses a discrete random variable. If,

62



however, I was interested in the wages earned by these
individuals, then I’d be talking about a continuous random
variable. Possible wages can be zero and whole numbers but
also fractions (like $9.42 per hour).

In the following sections, I introduce various functions that
describe probability for discrete and continuous random
variables.

Looking at all possibilities: Probability density function
(PDF)

A probability density function (PDF) shows the probabilities
of a random variable for all its possible values. The
probabilities associated with specific values (or events) from
a random variable must adhere to the properties 0 ≤ f(X) ≤ 1
and , where Xj represents the possible values
(outcomes) of random variable X. In other words, the chances
of any random event occurring must be anywhere from
impossible (probability of 0) to certain (probability of 1), and
the sum of the probabilities for all events must be 1 (or 100
percent).

The PDF for discrete random variables

If you’re observing a discrete random variable, the
PDF can be described in a table or graph. To construct a table,
you set up one column with the possible values of your
random variable and one column with the probability that
they’ll occur. In a graphical depiction of the PDF (a bar
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graph), you’d place the possible values of the random variable
on the horizontal axis, and the height of the vertical bars at
each value show the probability that they occur.

Suppose I perform an experiment that consists of tossing
three coins at the same time. I’m interested in the number of
times they land heads up, so I call the number of heads
observed random variable X. In Table 2-1, I list the possible
outcomes for this experiment and the values for X generated
from the process.

Out of eight possible outcomes, you get 0 heads in one
outcome, 1 head in three outcomes, 2 heads in three
outcomes, and 3 heads in one outcome. You can summarize
the information in Table 2-1 with a tabular or graphical
depiction of the PDF for X. In Table 2-1, you see 8 total
outcomes and four possible values for X: 0, 1, 2, and 3. This
information allows you to calculate the probability associated
with each X value. For example, X = 0 occurs only once, so
f(X = 0) = 1⁄8 = 0.125. In Table 2-2, I calculate the
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probabilities for the other X values and show a tabular form of
the PDF. In Figure 2-1, I show a graphical version.

Table 2-2 Probability Density Function, 3-Coin-Toss
Experiment

X f(X)

0

1

2

3

Note that the probabilities in the right-hand column
add up to 1. The total probabilities for any experiment must
always equal 1.
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Figure 2-1: Example of a probability density function graph
for a discrete random variable (3-coin-toss experi-ment).

The PDF for continuous random variables

If you’re observing a continuous random variable,
the PDF can be described in a function or graph. The function
shows how the random variable behaves over any possible
range of values. In a graphical depiction of the PDF, the
possible values of the random variable are on the horizontal
axis, and a curve (without any bars or breaks) is somewhere
above the axis.

The most common continuous PDF is that of a normally
distributed random variable. The graphical depiction of this
PDF is shown in Figure 2-2.
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Figure 2-2: A graphical depiction of a probability density
function for a normally distributed random variable.

Regardless of the values of the mean (μX) and standard
deviation (σX), the total density (area) under the curve is equal
to 1. In addition, about 68 percent of the density is within one
standard deviation, about 95 percent of the density is within
two standard deviations, and about 99.7 percent of the density
is within three standard deviations.

Because a continuous random variable can take on
infinitely many values, the probability that a specific value
occurs is zero!

An example can help illustrate this point. Suppose I randomly
choose one of my econometrics students. What is the
probability that the student will be exactly 21 years of age?
Answer: essentially zero. The reason is that student would
have to be randomly selected at the precise day, hour, minute,
second, and fraction of a second that he or she was born 21
years ago. That would be virtually impossible. There would,
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however, be some chance of randomly selecting a student
who’s between the ages of 20 and 22.

Probabilities with continuous random variables are
measured over intervals. Mathematically, this probability
measurement is expressed as f(Xa ≤ X ≤ Xb), where Xa and Xb
are possible values that can be taken by the random variable
X. I illustrate this graphically in Figure 2-3.

Figure 2-3: A continuous probability density function where
the shaded area represents the probability of observing a
value between Xa and Xb.

Summing up the probabilities: Cumulative density function
(CDF)

The cumulative density function (CDF) of a random variable
X is the sum or accrual of probabilities up to some value. It
shows how the sum of the probabilities approaches 1, which
sometimes occurs at a constant rate and sometimes occurs at a
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changing rate. In the following sections, I tell you how to find
the CDF for discrete and random variables, and I show you
how to describe it using a table, function, or graph.

The CDF for discrete random variables

For a discrete random variable, the CDF is equivalent to F(Xj)
= f (X ≤ Xj), where f(X) is the probability density function (see
the preceding section for details).

If you’re observing a discrete random variable, the
CDF can be described in a table or graph. To construct a
table, put the possible values of your random variable in one
column, the probability that they will occur in another
column, and the sums of the probabilities up to any given
value in a third column. In a graphical depiction of the CDF,
you place the possible values of the random variable on the
horizontal axis, and the height of a horizontal line at each
value shows the probability of that value summed with the
probabilities of all smaller values.

Suppose I perform an experiment that consists of tossing two
coins at the same time. I’m interested in the number of times
the coin lands heads up, so I designate the number of heads
observed as my random variable X. In Table 2-3, I illustrate
the possible outcomes for this experiment and the values for X
generated from the process.
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You can summarize the information in Table 2-3 with a table
or graph of the CDF for X. In Table 2-4, I show a tabular form
of the CDF. Recall that the PDF, f(X), represents the
probability of a given random event, and the CDF, F(X), is
the sum of the probabilities up to any random value. For
example, f(X = 1) = 2⁄4 = 0.50 and F(X = 1) = 1⁄4 + 1⁄2 = 3⁄4 =
0.75. In Figure 2-4, I show the same information graphically.

Table 2-4 Cumulative Density Function Table,
Two-Coin-Toss Experiment

X f(X) F(X)

0 0.25 0.25

1 0.50 0.75

2 0.25 1
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Figure 2-4: An example of a cumulative density function
graph for a discrete random variable (two-coin-toss
experiment).

The CDF for continuous random variables

Get ready for some calculus! (I can hear the cheers from
here.) The CDF is a sum of probabilities, and for a continuous
function, finding a sum means integration. Integration is a
calculus procedure that allows you to find densities under
nonlinear functions. For a continuous random variable, the

CDF is where f(X) is the probability density
function (see the earlier section “Looking at all possibilities:
Probability density function [PDF]” for details).
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If you’re observing a continuous random variable,
the CDF can be described in a function or graph. The function
shows how the random variable behaves over any possible
range of values. In Figure 2-5, I display the CDF for a
normally distributed random variable.

The precise shape of the CDF depends on the mean and
variance (the square of the standard deviation) of your
random variable. A smaller mean shifts the curve to the left,
and a larger mean shifts the curve to the right. A smaller
variance makes the curve steeper, whereas a larger variance
makes the curve flatter.

Figure 2-5: A graphical depiction of a cumulative density
function for a normally distributed random variable.

Putting variable information together: Bivariate or joint
probability density

Because one primary objective of econometrics is to examine
relationships between variables, you need to be familiar with
probabilities that combine information on two variables.
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A bivariate or joint probability density provides the
relative frequencies (or chances) that events with more than
one random variable will occur. Generally, this information is
shown in a table.

For two random variables, X and Y, you’re already familiar
with the notation for joint probabilities from your statistics
class, which uses the intersection term, ∩, like this: P(X = a ∩
Y = b).

The variables a and b are possible values for the random
variable. However, in econometrics, you likely need to
become familiar with this mathematical notation for joint
probabilities: f(X, Y). In this notation, the comma is used
instead of the intersection operator.

In Table 2-5, I provide an example of a joint probability table
for random variables X and Y. The column headings in the
middle of the first row list the X values (1, 2, and 3), and the
first column lists the Y values (1, 2, 3, and 4). The values
contained in the middle of Table 2-5 represent the joint or
intersection probabilities. For example, the probability X
equals 3 (see column 3) and Y equals 2 (row 2) is 0.10. In
your econometrics class, the mathematical notation used to
express this is likely to look like f(X = 3, Y = 2) = 0.10.
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You can also see that the column sums, f(X), contain the
marginal or unconditional probabilities for random variable X
and the row sums, f(Y), contain the same information for
random variable Y. For example, f(Y = 3) = 0.25; that is, the
probability that Y equals 3 is 0.25.

Predicting the future using what you know: Conditional
probability density

Prediction in econometrics involves some prior knowledge.
For example, you may attempt to predict how many “likes”
your status update will get on Facebook given the number of
“friends” you have and time of day you posted. In order to do
so, you’ll want to be familiar with conditional probabilities.

Conditional probabilities calculate the chance that a
specific value for a random variable will occur given that
another random variable has already taken a value.

Calculating conditional probability density
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Conditional probabilities use two variables, so you’ll need the
joint and marginal probabilities (see the preceding section).
Typically, this information is displayed in a table. The joint
probabilities for random variables X and Y are shown in the
middle rows and columns of Table 2-5, and the marginal
probabilities are on the outside row for variable X and outside
column for variable Y.

You can calculate conditional probabilities using the
following formula:

It reads, the probability of Y given X equals the probability of
Y and X divided by the probability of X.

Suppose you’re interested in calculating a specific conditional
probability using Table 2-5; the probability that Y equals 1
given that X equals 3. Using this formula and plugging in the
probabilities from Table 2-5, your answer would be

The numerator in your calculation of a conditional
probability is a joint probability, so it doesn’t matter if you
write it as Y and X or X and Y.

Checking for statistical independence
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Regardless of the strength of your theory and the appeal of
your common sense, in econometrics you’ll ultimately want
to examine the statistical relationship between variables. You
may first want to determine if any relationship exists at all.

Events are said to be independent if one event has no
statistical relationship with the other event. One way you can
determine statistical independence is by observing that the
probability of one event is unaffected by the occurrence of
another event.

If f(Y|X) = f(Y), then the events are statistically independent;
that is, the events are independent if the conditional and
unconditional probabilities are equal. If f(Y|X) ≠ f(Y) (meaning
the conditional and unconditional probabilities are not equal),
then they are dependent.

Using Table 2-5, I can calculate the probability that Y equals
4 given that X equals 3, as follows:

I can also calculate the probability that Y equals 4 by
summing the values in row 4: f(Y = 4) = 0 + 0 + 0.20 = 0.20.

Because the values (the conditional and unconditional
probabilities) are unequal, I conclude that X and Y are
dependent.

Understanding Summary Characteristics of Random
Variables
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When you want to describe the distribution of a random
variable with numbers, you need to calculate the summary
measures (or moments). The two most commonly reported
measures are the expected value (or mean) and the variance.
When you’re examining two random variables
simultaneously, the covariance or correlation is frequently
reported.

Making generalizations with expected value or mean

The expected value (or mean) of a random variable provides a
measure of central tendency, which means that it provides one
measurement of where the data tends to cluster.

The expected value is the average of a random
variable. If you have a discrete random variable, you can
calculate the expected value with the equation

, where X represents the different possible
values for the random variable, and f(X) is the probability that
each value will occur.

Expected value is like the mean, so you can use μX
instead of E(X) to symbolize it.

If you have a continuous random variable, then you calculate
the expected value with this equation:
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Although you may need to recognize the difference between
discrete and continuous random variables, you probably
won’t need to perform manual calculations of expected value
for continuous random variables. You should, however, know
how to perform manual calculations for a discrete random
variable.

Suppose I’m examining random variable X with the
probability distribution shown in the first two columns of
Table 2-6. I can find the expected value by multiplying each
possible value for X by its probability of occurring and then
adding those values. I show this operation in the third column,
which gives me E(X) = 1.5.

Table 2-6 Expected Value of a Random Variable

X Probability (f(X)) X · f(X)

0 0.125 0

1 0.375 0.375

2 0.375 0.750

3 0.125 0.375
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Total: 1 1.5

If you’re manipulating equations containing an expected
value operator, you’ll find the following five properties
useful:

The expected value of a constant is just the constant itself:
E(a) = a

The expected value of two random variables added
together is equal to the sum of each of their expected values:
E(X + Y) = E(X) + E(Y)

The expected value of a random variable multiplied by a
constant is equal to the constant multiplied by the expected
value of the random variable: E(aX) = aE(X)

If X and Y are independent random variables, then the
expected value of their product is equal to the product of their
expected values: E(XY) = E(X)E(Y)

If X and Y are independent random variables, then the
expected value of their ratio is equal to the ratio of their

expected values:

Suppose I create a random variable W defined by W = 5 + 2X
+ XY, where the random variable X has an expected value
equal to 3, the random variable Y has an expected value equal
to 10, and they’re independent random variables. Using the
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expected-value properties, I calculate the expected value of W
as

Measuring variance and standard deviation

The variance of a random variable provides a measure of
dispersion. Measures of dispersion offer a quantitative value
of the diversity in the data. The variance increases the value
of dispersion exponentially as measurements deviate from the
mean. The variance is used to produce other summary
measures, including the standard deviation, which is the
square root of the variance. The standard deviation is a
commonly quoted measure of dispersion because its values
are on the same scale as the variable being measured.

The variance is the average squared difference
between the value of a random variable and its mean. If your
random variable is discrete, you can calculate the variance as

, where X represents the
different possible values for your random variable, E(X) is the
mean of your random variable, and f(X) is the probability that
each value will occur.
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You can also write the variance formula this way:

.

If your random variable is continuous, then you calculate the

variance with .

You’ll probably be required to recognize the difference
between discrete and continuous random variables, but you’ll
probably only need to perform manual calculations for
discrete random variables.

Suppose I’m examining random variable X with the
probability distribution shown in the first two columns of
Table 2-7. First, I calculate the mean by taking each possible
value for X, multiplying them by their probability of
occurring (shown in column 2), and then adding these values.
I show this operation in the third column, which gives me
E(X) = μX = 1.5. Second, I square the difference between each
value of X and its mean, multiply by the probability the X
value occurs, and add those numbers. I show this final step in
the fourth column, which gives me Var(X) = 0.75.
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The following properties are helpful if you’re
manipulating equations containing a variance operator:

The variance of a constant is zero: Var(a) = 0

The variance of a constant added to a random variable is
equal to the variance of the random variable: Var(a + X) =
Var(X)

The variance of a random variable multiplied by a
constant is equal to the constant squared multiplied by the
variance of the random variable: Var(aX) = a2Var(X)

The variance of two random variables added together is
equal to the variance of one plus the variance of the other plus
two times the covariance of the two variables: Var(X + Y) =
Var(X) + Var(Y) + 2Cov(X, Y)

The variance of one random variable subtracted from
another random variable is equal to the variance of one plus
the variance of the other minus two times the covariance of
the two variables: Var(X – Y) = Var(X) + Var(Y) – 2Cov(X, Y)

If two random variables are independent, then their
covariance is zero. Covariance measures how two variables
are related, so three outcomes are possible: The covariance is
positive if the two variables have a direct relationship, the
covariance is negative if the two variables have an inverse
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relationship, and the covariance is zero (or close to it) if
there’s no clear relationship between the two variables (see
the following section “Looking at relationships with
covariance and correlation” for a discussion of this topic).

Suppose I create a random variable W defined by W = 3 + X –
Y, where the random variable X has a variance equal to 16, the
random variable Y has a variance equal to 25, and the
covariance of variables X and Y is –4. Using the variance
properties, I calculate the variance of W as

You can calculate the standard deviation by taking
the square root of the variance. The calculation can be
described by or . Although
mathematical manipulations and distributions are usually
based on the variance measure, the standard deviation is
commonly reported in statistics and econometrics because it’s
measured in the same units as the random variable. In the
previous example, the Var(W) = 49, so the sd(W) = 7.

Looking at relationships with covariance and correlation
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When you start considering two random variables at the same
time, you want to be able to summarize their relationship.
Covariance and correlation are the most common measures
used to summarize how two random variables are related.

Figuring out which way they’re going: Covariance

Covariance uses the difference between the value of
each random variable and its mean to determine how they
vary with one another. You can calculate the covariance of
two random variables, X and Y, as

where X and Y represent the different possible values for your
two discrete random variables, E(X) is the mean of random
variable X, E(Y) is the mean of random variable Y, and f(X, Y)
is the joint probability that each value will occur (see the
earlier section “Putting variable information together:
Bivariate or joint probability density” if you need a refresher
on these types of probabilities).

You can also write the covariance formula as

or

. If the random variables are
continuous, the covariance is calculated using the formula
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.

In Table 2-8, I provide an example of a joint probability table
for random variables X and Y.

Using the information in Table 2-8 for random variables X
and Y, you can calculate their covariance with the following
steps:

1. Calculate the expected value or mean, μX, of X. In this
step, you multiply each X value in the column headings by its
respective probability (f(X)) in the last row and sum the
values.

μX = (1)(0.30) + (2)(0.10) + (3)(0.60) = 2.3

2. Calculate the expected value or mean, μY, of Y. In this
step, you multiply each Y value in the first column by its
respective probability (f(Y)) in the last column and sum the
values.

μY = (1)(0.35) + (2)(0.20) + (3)(0.25) + (4)(0.20) = 2.3
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3. Calculate the covariance of X and Y. In this step, you
multiply each X and Y value by its respective joint probability
(f(X,Y)) in the inner cells of the table and sum the values.
Then you subtract the product of the means of X and Y
calculated in Steps 1 and 2.

Unlike variance (which can only be a positive
number), covariance can be positive or negative. A positive
value indicates that the two variables tend to move in the
same direction; when one goes up, the other one goes up. A
negative value indicates that the two variables tend to move in
opposite directions; when one goes up, the other goes down.

If you’re manipulating equations containing a
covariance operator, the following properties help you:

The covariance of two independent random variables is
zero: Cov(X, Y) = 0 if f(X|Y) = f(X) or f(X, Y) = f(X)f(Y)
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The covariance of two random variables multiplied by a
constant is equal to the product of the constant times the
covariance of the random variables: Cov(aX, bY) = abCov(X,
Y)

The covariance of a random variable times itself is equal
to the variance of the random variable: Cov(X, X) = Var(X)

The magnitude of the covariance is influenced
greatly by the units of measurement. Therefore, you can use
covariance to determine the direction of the relationship
between two variables (positive or negative), but you
shouldn’t use covariance to determine the strength of the
relationship.

Gauging just how strong the relationship is: Correlation

A measure related to covariance known as the correlation
coefficient can be used to measure the strength of the
relationship between two variables.

The correlation between two random variables is
the ratio between their variance and the product of their
standard deviations (see the previous section “Measuring
variance and standard deviation” if you need to review these
calculations). The correlation coefficient, therefore, is defined
as
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or

The sign of the resulting value is the same as the covariance
(positive or negative) and must be between –1 and +1.

A value of –1 indicates a perfectly negative relationship, and
a value of +1 implies a perfectly positive relationship. In
Figure 2-6, I show one graph with a perfect negative
relationship and one graph with a perfect positive
relationship.

Figure 2-6: Two random variables with a perfect positive (a)
and negative (b) relationship.

You’re unlikely to encounter situations where a perfect
relationship exists between two variables. Typically, the
relationships you see will look like those in Figure 2-7.

The more difficult identifying a clear positive or negative
relationship becomes, the closer the correlation coefficient
gets to zero. In Figure 2-8, I show a random dispersion of
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values for X and Y. When you see something like this, your
correlation coefficient is zero (or very close to zero).

Figure 2-7: Two random variables with an imperfect positive
(a) and negative (b) relationship.

Figure 2-8: Two random variables exhibiting no relationship.

Correlation coefficients identify linear
relationships, but they can be misleading if the relationship
between two variables is nonlinear.
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In Figure 2-9, I show two variables that clearly have a
nonlinear relationship.

Figure 2-9: Two random variables exhibiting a nonlinear
relationship.

If you calculate the correlation coefficient in a situation like
this, you get a value of zero (or close to zero). However, you
shouldn’t ignore relationships simply because they aren’t
linear. Instead, use other techniques to identify relationships
like the one in Figure 2-9 (which I cover in Chapter 8).
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Chapter 3

Making Inferences and Testing Hypotheses

In This Chapter

Utilizing sample data and estimating descriptive measures

Understanding sampling distributions and the central limit
theorem

Reviewing the characteristics of common probability
distributions

Using probability distributions for interval estimation and
hypothesis testing

One goal of both statistics and econometrics is to develop
concepts that can be used to make predictions and forecasts
with data. As a student, you typically use surveys and other
forms of sample data to test your hypotheses and draw
conclusions, and to do so, you need to understand how
statistical inference works.

Statistical inference and hypothesis testing focus on the
process of making generalizations for a population from
sample information. Although econometrics courses cover
inference procedures, you need to understand the foundational
concepts covered in this chapter to fully grasp and appreciate
those techniques.

This chapter reviews characteristics of well-known
probability distributions and some fundamental concepts of
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statistical inference. If you find your statistics background
isn’t strong enough to go through this chapter relatively
quickly, then I recommend that you consult Statistics For
Dummies (by Deborah Rumsey; John Wiley & Sons, Inc.)
and a good statistics textbook.

Getting to Know Your Data with Descriptive Statistics

Descriptive statistics are measurements that can be used to
summarize your sample data and, subsequently, make
predictions about your population of interest.

When descriptive measures are calculated using
population data, those values are called parameters. When
you calculate descriptive measures using sample data, the
values are called estimators (or statistics).

In the following sections, I tell you how to calculate the most
common descriptive measures used in econometrics. (The
calculation of population parameters using probability density
information is explained in Chapter 2.) I also help you
determine whether a particular estimator is good.

Calculating parameters and estimators

When you collect a random sample of data and calculate a
statistic with that data, you’re producing a point estimate,
which is a single estimate of a population parameter.

You could estimate many population parameters with sample
data, but here I show you how to calculate the most popular
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statistics: mean, variance, standard deviation, covariance, and
correlation. The following list indicates how each parameter
and its corresponding estimator is calculated. (If you’re
having trouble remembering what each of these is designed to
measure, flip to Chapter 2.)

Mean (average): The mean is the simple average of the
random variable, X. The population mean for X is

where Xi represents the individual measurements and N is the
size of the population. The sample mean is

The difference between the sample and population mean is
that that the sample mean uses the sample size n instead of the
population size N.

Variance: The variance is the average of the squared
differences from the mean. The population variance for a
random variable X is
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where Xi represents the individual measurements, μx is the
population mean, and N is the size of the population. The
sample variance is

Note that the denominator for the sample variance not only
uses the sample size n but also subtracts 1 from that number.
This change is known as a degrees of freedom adjustment.
Degrees of freedom adjustments are usually important in
proving that estimators are unbiased. This concept is
discussed in the following section, “Determining whether an
estimator is good.”

Standard deviation: The standard deviation measures
how spread out the random variable is, on average, from the
mean. The standard deviation is the square root of the
variance, so the population standard deviation for random
variable X is

and the sample standard deviation is
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Covariance: The covariance measures how much two
random variables change together. The population covariance
between two random variables X and Y is

where Xi represents the individual X values, Yi represents the
individual Y values, and N is the total number of
measurements in the population. The sample covariance is

where is the sample mean of X, is the sample mean of Y,
and n is the sample size.

Correlation: The correlation refers to the relationship
between two random variables or sets of data. The population
correlation coefficient between two random variables X and Y
is

where σXY is the population covariance, σX is the population
standard deviation of X, and σY is the population standard
deviation of Y. The sample correlation coefficient is
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where sXY is the sample covariance, sX is the sample standard
deviation of X, and sY is the sample standard deviation of Y.

Now, try working with some numbers. In Table 3-1, I show
five observations of hamburger sales and prices. Use the
formulas to calculate the mean, variance, standard deviation,
covariance, and correlation.

Table 3-1 Hamburger Prices and Sales

Hamburger Sales (in units),
Y

Hamburger Price (in $),
X

100 1

80 2

63 3

45 4

21 5

You can use computer software, such as STATA, to
calculate descriptive statistics from the data in Table 3-1. By
typing “sum” on the command line, you get the descriptive
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statistics for all the variables in your dataset. If you want the
correlation between two variables, select Statistics ?
Summaries, tables, and tests ? Summary and descriptive
statistics ? Correlations and covariances from the menu
bar. Or you can enter “corr variable1 variable2” on the
command line. In your command, replace variable1 and
variable2 with the actual names you’ve given the variables in
your dataset. You can get covariance by adding an option to
the correlation command; type “corr variable1 variable2,
cov” on the command line. I execute these commands and
show you STATA’s output in Figure 3-1.

Figure 3-1: STATA output for descriptive statistics,
correlation, and covariance.

You should verify that your manual calculations of these
measures are consistent with STATA’s output.
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Summarizing data with descriptive statistics is a
relatively simple procedure, but make sure you examine the
values carefully. You can use descriptive measures to ensure
that your sample contains measurements that are realistic. For
example, if your population of interest is college graduates,
you wouldn’t expect your random sample from that group to
have an average age of 21. Careful attention to these details
provides more credibility in your data and the subsequent
inferences you make.

Determining whether an estimator is good

Statisticians and econometricians typically require
the estimators they use for inference and prediction to have
certain desirable properties.

For statisticians, unbiasedness and efficiency are the two
most-desirable properties an estimator can have. An estimator
is unbiased if, in repeated estimations using the method, the
mean value of the estimator coincides with the true parameter
value. An estimator is efficient if it achieves the smallest
variance among estimators of its kind. In some instances,
statisticians and econometricians spend a considerable
amount of time proving that a particular estimator is unbiased
and efficient.
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The estimator linearity property

Besides unbiasedness and efficiency, an additional
desirable property for some estimators is linearity. An
estimator has this property if a statistic is a linear
function of the sample observations.

This property isn’t present for all estimators, and
certainly some estimators are desirable (efficient and
either unbiased or consistent) without being linear. The
linearity property, however, can be convenient when
you’re using algebraic manipulations to create new
variables or prove other estimator properties.

Sometimes statisticians and econometricians are unable to
prove that an estimator is unbiased. In that case, they usually
settle for consistency. An estimator is consistent if it
approaches the true parameter value as the sample size gets
larger and larger. For this reason, consistency is known as an
asymptotic property for an estimator; that is, it gradually
approaches the true parameter value as the sample size
approaches infinity.

In practical situations (that is, when you’re working with data
and not just doing a theoretical exercise), knowing when an
estimator has these desirable properties is good, but you don’t
need to prove them on your own. You simply want to know
the result of the proof (if it exists) and the assumptions
needed to carry it out.
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Laying the Groundwork of Prediction with the Normal and
Standard Normal Distributions

To fully grasp prediction and hypothesis testing in
econometrics, you need to know the properties of the normal
distribution and remember how to work with normally
distributed random variables.

Recognizing usual variables: Normal distribution

A random variable with a normal distribution has a
probability density function that is continuous, symmetrical,
and bell-shaped. Although many random variables can have a
bell-shaped distribution, the density function of a normal
distribution is precisely

where μX represents the mean of the normally distributed
random variable X, σX is the standard deviation, and
represents the variance of the normally distributed random
variable.

A shorthand way of indicating that a random
variable, X, has a normal distribution is to write .

I show a generic normal distribution in Figure 3-2. A
distinctive feature of a normal distribution is the probability
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(or density) associated with specific segments of the
distribution. I divide the normal distribution in Figure 3-2 into
the most common intervals (or segments): one, two, and three
standard deviations from the mean.

Figure 3-2: A random variable with a normal distribution.

As I illustrate in Figure 3-2, with a normally distributed
random variable, approximately 68 percent of the
measurements are within one standard deviation of the mean,
95 percent are within two standard deviations, and
99.7 percent are within three standard deviations.

Suppose you have data for the entire population of individuals
living in retirement homes. You discover that the average age
of these individuals is 70, the variance is 9 (standard
deviation, ), and the distribution of their age is
normal. Using shorthand, you could simply write this
information as X ~ N(70, 9). If you randomly select one
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person from this population, what are the chances that he or
she is more than 76 years of age?

Using the density from a normal distribution, you know that
approximately 95 percent of the measurements are between
64 and 76 (70 – 2σX < X < 70 + 2σX) (notice that 6 is equal to
two standard deviations). The remaining 5 percent are
individuals who are less than 64 years of age or more than 76.
Because a normal distribution is symmetrical, you can
conclude that you have about a 2.5 percent (5% ÷ 2 = 2.5%)
chance that you randomly select somebody who is more than
76 years of age.

If a random variable is a linear combination of
another normally distributed random variable(s), it also has a
normal distribution.

Suppose I have two random variables described by these
terms:

In other words, random variable X has a normal distribution
with a mean of μX and variance of , and random variable Y
has a normal distribution with a mean of μY and a variance of

. If I create a new random variable, W, as the following
linear combination of X and Y, W = aX + bY, then W also has
a normal distribution. Additionally, using expected value and
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variance properties (I discuss these in Chapter 2), I can
describe my new random variable with this shorthand
notation: .

Putting variables on the same scale: Standard normal
distribution (Z)

A specific version of a normally distributed random variable
is the standard normal.

A standard normal distribution is a normal
distribution with a mean of 0 and a variance of 1. It’s useful
because you can convert any normally distributed random
variable to the same scale, which allows you to easily and
quickly calculate and compare probabilities.

Typically, the letter Z is used to denote a standard normal, so
the standard normal distribution is usually shown in shorthand
as Z ~ N(0, 1).

You can obtain a standard normal random variable by
applying the following linear transformation to any normally
distributed random variable:

where X is a normally distributed random variable with mean
μX and standard deviation σX.
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Suppose you’re working with population data for individuals
living in retirement homes. The average age of these
individuals is 70, the variance is 9, and the distribution of
their age is normal; that is, X ~ N(70, 9). If you randomly
select one person from this population, what are the chances
that he or she is more than 75 years of age? You can figure
out this probability by using the normal probability density
function (see Chapter 2) and applying integral calculus, but
fortunately the standard normal distribution simplifies the
problem. Instead, you simply convert the X value of 75 to a Z
value and use the standard normal probability table (Table
A-1 in the appendix) to look up the density in that part of the
distribution. Using the formula for Z and the standard normal
probability table, you get

This answer tells you that you have a 4.75 percent chance of
selecting somebody from the population who’s more than 75
years of age.

The other popular continuous probability
distributions — chi-squared (χ2), t, and F — are based on the
normal or standard normal distributions. I discuss those
distributions in the later section “Defining the chi-squared
(χ2), t, and F distributions.”

Working with Parts of the Population: Sampling Distributions
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Many random variables don’t have a normal distribution. So
why is the normal distribution so popular? The answer has to
do with sampling distributions.

A sampling distribution is a probability distribution
(or density) of a statistic when random samples of size n are
repeatedly drawn from a population. It is not the distribution
of your sample measurements.

A population parameter can be estimated with a statistic using
sample data. For example, if you calculate a mean, median,
variance, and so on using a random sample from your
population, presumably you are using those figures as
estimates of their population (true) or parameter values. Now
imagine that you sample your population numerous times and
calculate these statistics for every sample that you draw. The
values of these statistics change because the measurements in
your sample change. The probability distribution of these
values is a sampling distribution.

In the following sections, I explain how the sampling
distribution of the mean is used to derive the properties of the
central limit theorem and how this ends up forming the
foundation for probability distributions commonly used in
statistics and econometrics.

Simulating and using the central limit theorem

One sampling distribution with very desirable characteristics
is the distribution of sample means.
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One of the most important concepts in statistics, the
central limit theorem (CLT) utilizes the distribution of sample
means. The CLT states that if random samples of n
observations are drawn from a population with mean μX and
variance , then when n is large, the distribution of the
sample mean is approximately normally distributed with

mean and variance .

I can write it more simply as .

You may be wondering how big exactly n must be in order to
be considered large. How many observations are required to
obtain a normal distribution for the sample mean? The answer
depends on the shape of the source population distribution.
Figure 3-3 shows you a graphical illustration of the CLT’s
result, which the following points summarize:

When the probability distribution of X is normal, the
distribution of is exactly normally distributed regardless of
sample size.

When the probability distribution of X is symmetrical, the
CLT applies very well to small sample sizes (often as small as
10 ≤ n ≤ 25).
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When the distribution of X is asymmetrical, the
approximation to a normal distribution becomes more
accurate as n becomes large.

You’re not likely to know exactly how your
population data is distributed. Consequently, bigger is better,
because it ensures a more accurate approximation to the
normal distribution. With a large sample size, you don’t need
a population with a normal distribution for your sample
means to have a normal distribution.

Figure 3-3: The central limit theorem (CLT) at work with
different population distributions.

With the result of the CLT, you can convert the
distribution of a sample mean to a standard normal. Because
the CLT tells you that
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and any normally distributed variable can be converted to a
standard normal, then Z is defined as

Generally, a good convergence of the sample mean
distribution to a normal distribution can be achieved with a
sample size of 25 or more. If you’re planning to
simultaneously analyze numerous variables, as is typical in
econometrics, you want to use many more observations.

Defining the chi-squared (χ2), t, and F distributions

In econometrics, you use the chi-squared (χ2), t, and F
distributions extensively. The following sections review the
logic of their derivation and their basic characteristics to help
you understand when and how to use them.

The chi-squared distribution

The chi-squared distribution is useful for comparing
estimated variance values from a sample to those values
based on theoretical assumptions. Therefore, it’s typically
used to develop confidence intervals and hypothesis tests for
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population variance. First, however, you should familiarize
yourself with the characteristics of a chi-squared distribution.

The χ2 distribution is a squared standard normal
random variable, so it takes only nonnegative values and
tends to be right-skewed. The extent of its skewness depends
on the degrees of freedom or number of observations. The
higher the degrees of freedom (more observations), the less
skewed (more symmetrical) the chi-squared distribution.

I illustrate a few chi-squared distributions in Figure 3-4,
where df1, df2, and df3 indicate increasing degrees of
freedom.

Figure 3-4: Chi-squared distributions with various degrees of
freedom.

The chi-squared distribution is typically used with variance
estimates and rests on the idea that you begin with a normally
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distributed random variable, such as . With
sample data, you estimate the variance of this random
variable with

where is the sample mean and n is the sample size. If you
algebraically manipulate this formula, you arrive at the
chi-squared distribution:

The last step, in which you divide both sides by the known (or
assumed) population variance, is what standardizes your
sample variance to a common scale known as chi-squared.

You can find the densities for various parts of the chi-squared
distribution in Table A-3 of the appendix.

The t distribution

You probably used the t distribution extensively when dealing
with means in your statistics class, but in econometrics you
also use it for regression coefficients. Before you find out
how that works, you should know how the t distribution is
derived and its basic properties.
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The t distribution is derived from a ratio of a
standard normal random variable and the square root of a χ2

random variable. It’s bell-shaped, symmetrical around zero,
and approaches a normal distribution, as the degrees of
freedom (number of observations) increases.

I show how the t distribution changes with degrees of
freedom in Figure 3-5. The df1, df2, and df3 indicate
increasing degrees of freedom (or observations). As the
sample size approaches the population size, the t distribution
approaches the standard normal.

Figure 3-5: The t distribution with various degrees of
freedom.

If you have a normally distributed sample mean, such as
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then you can convert it to a standard normal by

Similarly, if you have a squared normal, such as the sample
variance , you can convert it to a chi-squared by

When you take the ratio of the standard normal to the square
root of your chi-squared distribution, you end up with a t
distribution:

You can find the densities for various parts of the t
distribution in Table A-2 of the appendix.

The F distribution

You probably used the F distribution in your statistics class to
compare variances of two different normal distributions. In
econometrics, you have a similar use for the F distribution.
You’ll find that the F distribution is easier to use if you’re
familiar with some of its characteristics, so I discuss those in
this section.
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The F distribution is derived from a ratio of a two
χ2 distributions divided by their respective degrees of
freedom. The F distribution tends to be right-skewed, with the
amount of skewness depending on the degrees of freedom. As
the degrees of freedom in the numerator and denominator
increase, the F distribution approaches a normal distribution.

I show how the F distribution changes with your degrees of
freedom in Figure 3-6. The df1df1, df2df2, and df3df3
indicate increasing degrees of freedom (or observations) in
both the numerator and denominator. Although the skewness
of the F distribution decreases when either the numerator or
denominator degrees of freedom increase, it approaches a
normal distribution when both become large.

Figure 3-6: The F distribution with various degrees of
freedom.
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If X and Y are two normally distributed random variables,
then the squared deviations of the X and Y values from their

mean have a chi-squared distribution ( and

). When you take the ratio of the chi-squared
distributions and divide each by its degrees of freedom, you
end up with an F distribution:

You can find the densities for various parts of the F
distribution in Table A-4 of the appendix.

Making Inferences and Testing Hypotheses with Probability
Distributions

When you want to test a theory (or an assumption) about the
value of a population parameter, you perform some type of
hypothesis test. In most cases, you use one of the four most
common probability distributions to perform your test: the Z
(standard normal), t, χ2, or F distributions.

Performing a hypothesis test

When you test an assumption or prior belief about a
population parameter (such as a mean, variance, or regression
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coefficient), the assumption is typically labeled your null
hypothesis (H0). You test it against an alternative hypothesis
(H1). Hypothesis tests can be either one-tailed (right or left)
or two-tailed (both left and right). At the conclusion of your
hypothesis test, you either reject the null hypothesis or fail to
reject the null hypothesis. (You rarely hear an econometrician
or statistician refer to “accepting” a hypothesis.)

To perform a hypothesis test, follow these steps:

1. Estimate the population parameter using your sample
data.

This step can be accomplished with point estimation. A point
estimate is a single estimate of your parameter of interest.

2. Determine the appropriate distribution.

Estimators usually follow one of the well-known continuous
probability distributions (the Z, t, chi-squared, or F). In Table
3-2, I summarize how you choose the appropriate distribution.

3. Calculate an interval estimate or test statistic.

If you decide to use the confidence interval approach to test
your hypothesis, then you need to calculate an interval
estimate of your population parameter (I provide more details
and an example of interval estimation in the section “The
confidence interval approach”).

If you use the test of significance approach to test your
hypothesis, then you calculate the appropriate test statistic (I
review the formulas for common test statistics in the section
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“The test of significance approach”). Regardless of whether
you decide to use the confidence interval or test of
significance, you need your point estimate from Step 1 and
the distribution you chose in Step 2.

4. Determine the hypothesis test outcome.

After you complete Step 3, you determine whether you reject
or fail to reject the null hypothesis based on some
predetermined level of significance (α) or confidence (1 – α).
The most common values for α are 0.01, 0.05, and 0.10 (or 1
percent, 5 percent, and 10 percent). See the sidebar “A note
on levels of significance and p-values” for more detail.
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In Table 3-2, treat c as a number representing a hypothesized
value. The list of hypotheses in Table 3-2 isn’t exhaustive, but
it should remind you of the types of tests encountered in your
statistics course. If you’re comfortable with these scenarios,
then you’re well prepared for other tests that you’ll encounter
in econometrics.

The confidence interval approach

When you use the confidence interval approach to hypothesis
testing, you calculate a lower limit and an upper limit for a
random interval and attach some likelihood that the interval
contains the true parameter value. If you’re testing a
hypothesis, the values of your estimated interval relative to
the assumed value of the parameter determine whether you
reject the null hypothesis or do not reject the null hypothesis.

In your statistics class, you likely saw a number of different
formulas for confidence intervals. The formula you choose
depends on the purpose of the hypothesis test (testing a
population mean, a population variance, and so on). Figure
3-7 illustrates the general concept of using confidence
intervals for hypothesis testing.

Figure 3-7: Confidence interval used for hypothesis testing.
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If the hypothesized value for your parameter of
interest is in the critical region, you reject the null hypothesis.
If it’s in the confidence interval, you fail to reject the null
hypothesis.

You should feel comfortable using confidence intervals
before moving forward with other material in econometrics,
so be sure to review that material in your statistics text if
necessary.

You can say that your confidence interval has a 1 –
α probability of containing the true parameter value.
However, you shouldn’t say that the parameter value has a 1 –
α probability of being contained within the interval. The
interval is random because it depends on random estimators,
but the parameter (even though not known) is fixed and
nonrandom.

The test of significance approach

With the test of significance approach, you calculate a test
statistic and then compare that calculated value to the critical
value from one of the probability distributions (Z, t, χ2, or F)
to determine the outcome of your hypothesis test.

Which formula you choose for your test (and you should
know a few from statistics) depends on the purpose of the
hypothesis test (such as testing a population mean or a
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population variance). Figure 3-8 illustrates the general
concept of using a test statistic for hypothesis testing.

Figure 3-8: Test statistic used for hypothesis testing in
one-tailed and two-tailed tests.

If your calculated test statistic is in the critical
region, you reject the null hypothesis, and you can also say
that your test is statistically significant. If your calculated test
statistic is not in the critical region, you fail to reject the null
hypothesis, and you say that your test is statistically
insignificant.

Be sure to review test statistics and the test of significance
approach to hypothesis testing more before moving forward if
you’re not comfortable with it.

A note on levels of significance and p-values
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In some cases, you perform a hypothesis test with a
predetermined level of significance (α) or confidence (1 –
α). In other cases, you report the p-value of your test and
allow whoever’s examining your output to determine the
outcome of the test.

If you don’t feel that setting a predetermined level of
significance is appropriate, you should report the p-value
of the test instead. The p-value is the lowest level of
significance at which you could reject the null hypothesis
given your calculated test statistic. Your econometrics
software typically calculates these values for you when
you do any type of hypothesis test. I show a graphical
depiction of a p-value in the following figure.

The most common predetermined levels of significance
are 1 percent, 5 percent, and 10 percent (or α = 0.01, α =
0.05, and α = 0.10), but there’s nothing sacred about
these values.

Any value for α leaves you susceptible to type I and type
II errors. A type I error occurs when you reject a null
hypothesis that is in fact true. A type II error results
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when you fail to reject a null hypothesis that is in fact
false. The table summarizes these types of errors:

H0 True H0 False

Reject H0 Type I error Correct

Do not reject Correct Type II error

When you increase the value of α, then you increase the
chance of rejecting your null hypothesis. Because you
don’t know whether that hypothesis is true or false,
you’re increasing the chance of committing a type I error.

When you reduce the value of α, you increase the chance
of failing to reject your null hypothesis. You don’t know
whether that hypothesis is true or false, so you’re
increasing the chance of committing a type II error.

One reason for reporting p-values is to allow people
examining your output to apply their own tolerance for
committing type I and type II errors. This divulgence
relieves you from criticism of applying some arbitrary
value for α and passes the burden on to the reader.
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Part II

Building the Classical Linear Regression Model

Cramming for an exam? Visit
www.dummies.com/extras/econometrics for an
at-a-glance guide to defining a regression model.

In this part . . .
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Recognize how econometric techniques help you make
estimates about economic relationships by relating economic
theory to econometric models.

Grasp the fundamental ideas behind the most common
technique used to quantify economic relationships: the
ordinary least squares (OLS) technique, also known as
regression analysis.

Estimate simple regression models by hand and on the
computer and interpret the results of regression analysis with
the help of econometric software.

Get acquainted with the assumptions of the classical
linear regression model (CLRM) that define a “standard
situation” in econometrics and understand their role in
proving the Gauss-Markov theorem.

Find out precisely how a normal distribution is used in
econometrics and the importance of the normality assumption
for tests of statistical significance and calculations of forecast
error.
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Chapter 4

Understanding the Objectives of Regression Analysis

In This Chapter

Understanding the difference between correlation and
causality

Building econometric models and making a case for
causality

Working with different types of economic data

Econometric techniques help you make estimates about
economic relationships. For example, you can use your
knowledge of economic theory to predict that having more
disposable income leads to increased consumption for normal
goods, but you need econometrics to determine how much
consumption rises for a given increase in income. In other
words, the wisdom you acquired in your introductory and
intermediate economics courses helps you form hypotheses
about the direction (positive or negative signs) of various
relationships, but econometrics assists you in estimating their
magnitude.

The purpose of this chapter is twofold: to provide you with an
overview of the most common technique used to quantify
economic relationships, called regression analysis, and to
explain how to organize the data you’ll use for your analysis.
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In order to apply econometrics effectively, you need
some background in both economics and statistics. If you
need a refresher of economic theory, check out Economics
For Dummies by Sean Masaki Flynn (John Wiley & Sons,
Inc.). For a review of the relevant statistical concepts, refer to
Chapters 2 and 3 of this book.

Making a Case for Causality

Econometrics is typically used for one of the following
objectives:

Predicting or forecasting future events

Explaining how one or more factors affect some outcome
of interest

Although some econometrics problems have both objectives,
in most cases you use econometric tools for one aim or the
other.

Regardless of the objective for using econometrics,
econometric studies generally have one characteristic in
common: the specification of a model. Model specification
consists of selecting an outcome of interest or dependent
variable (typically labeled as Y) and one or more independent
factors (or explanatory variables, usually labeled with Xs). In
addition, model specification also, refers to choosing an
appropriate functional form (a topic that I discuss in Chapter
8).
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Independent variables are the factors that cause
changes in your dependent variable, not the other way around.
Because most situations in economics (and in some business
fields like marketing and accounting) involve
cause-and-effect scenarios, applied work in econometrics
pays careful attention to the variables chosen to be dependent
and independent. If the relationship between cause variables
and effect variables isn’t obvious, you should utilize your
common sense and knowledge of economics to justify the
causal assumptions of your model.

Justifying your model means that you should be able to
explain why it makes sense to think of your dependent
variable as being caused by the independent variables you’ve
selected. In some cases, that connection may be obvious, but
in other cases you may need to provide a detailed explanation.
For example, if you have state data and your dependent
variable is the average amount of time unemployed workers
are without a job, you’d want to include independent
variables that capture the skill traits of workers and other state
characteristics that may influence unemployment spell length.
Average education and work experience levels are
characteristics that, according to human capital theory, should
help workers reduce the amount of time they’re unemployed.
These are justifiable independent variables and won’t require
much explanation because of their direct connection with the
outcome of interest. On the other hand, state policies, such as
welfare assistance and unemployment insurance, have a less
obvious connection. Nevertheless, they’re likely to influence
worker decision making and be important causal factors. It’s
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likely, however, that you’ll need to invest more time
explaining how they’re related to the outcome and why their
inclusion among the independent variables makes sense.

Keep in mind that regression analysis identifies the direction
(sign ±) and strength (magnitude) of the relationship between
the variables in your model. But the strength of the statistical
relationship does not imply causality. Figure 4-1 shows the
scatter plot of monthly ice cream production in the United
States and drowning deaths in Florida single residence pools
in 2006. You can see that drowning and ice cream production
have a strong positive relationship (trend line is upward
sloping, so both variables move in the same direction [deaths
increase, ice cream increase]), but you don’t have a strong
case for one causing the other simply because they’re
correlated (ice cream affects drowning?). It’s simply an
example of spurious correlation, which occurs when two
variables coincidentally have a statistical relationship
(positive or negative) but one doesn’t cause the other.
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Figure 4-1: Scatter plot and linear trend line of monthly ice
cream production and monthly drowning deaths.

Causation cannot be proven by statistical results.
Your results can be used to support a hypothesis of causality,
but only after you’ve developed a model that is well grounded
in economic theory and/or good common sense.

Getting Acquainted with the Population Regression Function
(PRF)

Before you begin with regression analysis, you need to
identify the population regression function (PRF). The PRF
defines reality (or your perception of it) as it relates to your
topic of interest. To identify it, you need to determine your
dependent and independent variables (and how they’ll be
measured) as well as the mathematical function describing
how the variables are related.

Setting up the PRF model

After you narrow down your topic or question of interest,
you’re ready to develop your model using the following steps:

1. Provide the general mathematical specification of your
model.

The general specification denotes your dependent variable
and all the independent (or explanatory) variables that you
believe affect the dependent variable in your population of
interest.
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Suppose that three variables affect the dependent variable.
The general specification will look something like Y =
f(X1,X2,X3), where Y is the dependent variable and the Xs
represent the independent variables, which you believe
directly affect (or cause) fluctuations in the Y variable.

Unless the reasoning is obvious, provide some
justification for the variables chosen as independent variables
and for the functional form of the specification (see Step 2).
Doing so helps you avoid misspecification, which occurs if
you omit important variables or include irrelevant variables (I
cover the details of misspecification issues in Chapter 8).

2. Derive the econometric specification of your model.

In this step, you take the variables identified in Step 1 and
develop a function that can be used to calculate econometric
results. This functional form is known as the population
regression function (PRF). In this step, you’re also
acknowledging that the relationship you hypothesized in Step
1 is expected to exist when you look at the average of the
data; not for every single observation.

Assume you have reason to believe that the model is linear. It
will look like this: E(Y|X1,X2,X3) = β0 + β1X1 +β2X2 + β3X3.

In this function, the conditional mean operator E(Y|X1,X2,X3)
indicates that the relationship is expected to hold, on average,
for given values of the independent variables. The intercept
term β0, also called the constant, is the expected mean value
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of Y when all Xs are equal to zero. The other βs represent the
partial slopes (effects). These partial slopes tell you how
much your dependent variable changes when you change the
independent variable by one unit but hold the value of the
other independent variables constant. (This idea of changing
one thing and keeping the rest the same is the ceteris paribus,
or all else equal, condition that you’re familiar with from your
introductory economics courses.)

Depending on the particular phenomenon you’re analyzing, a
nonlinear relationship using squared terms, logs, or another
method instead of the linear function E(Y|X1,X2,X3) = β0 +
β1X1 +β2X2 + β3X3 may be more appropriate (these
alternatives are described in Chapter 8).

The specification you choose is assumed to describe
the “true” relationship, so be sure to justify it using sound
economic theory and common sense.

3. Specify the random nature of your model.

This step clarifies that the relationship you’ve assumed in
Steps 1 and 2 holds on average but may contain errors when a
specific observation is chosen at random from the population.
This is known as the stochastic population regression
function and is written as Yi = β0 + β1X1i + β2X2i + β3X3i + εi,
where the i subscripts denote any randomly chosen
observation and εi represents the stochastic (or random) error
term associated with that observation. Note that stochastic is
simply statistics jargon for random.
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Regardless of how you choose to represent the PRF, the
random error term represents the difference between the
observed value of your dependent variable and the conditional
mean of the dependent variable derived from your model.
This value is positive if the observed value is above the
conditional mean and negative if it is below.

The random error can result from one or more of
the following factors:

Insufficient or incorrectly measured data

A lack of theoretical insights to fully account for all the
factors that affect the dependent variable

Applying an incorrect functional form; for example,
assuming the relationship is linear when it’s quadratic

Unobservable characteristics

Unpredictable elements of behavior

If you have several explanatory variables, you can
save time by writing the econometric model using some
mathematical shorthand. With algebraic notation, it would
look like one of the following two functions:
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Walking through an example

This section is all about illustrating the steps used to develop
the population regression function with an example. Suppose
you’re interested in explaining the variation in exam scores
for an entire group of econometrics students. Economic
theory suggests that input will have a positive effect on
output. In this case, common sense suggests that study hours
are an appropriate input and exam scores be used as an
output, so the general model is S = f(H), where S is exam
score and H is study hours (number of hours students spent
studying).

The art of econometrics is the way you use additional insights
to specify the econometric model. Often those theoretical
insights are vague or don’t exist at all, so some
experimentation may be required. For simplicity, assume in
this case that the relationship is linear. Then the PRF is
E(S|H) = β0 + β1H and the stochastic PRF is Si = β0 + β1H1 +
εi.

Table 4-1 contains the population data of exam scores and
study hours for my econometrics students.

Table 4-1 Study Hours and Individual Exam Scores for
Population of Econometrics Students

Study Hours, H Scores, S
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1 25, 30, 35, 40, 45

2 35, 40, 44, 50, 55, 58

3 49, 54, 60, 64, 68

4 50, 63, 65, 73, 78, 83, 85

5 72, 77, 80, 86, 88, 95

Using the data in Table 4-1, you can calculate the conditional
means (the average exam score for each level of study hours)
and the resulting PRF. The conditional means are as follows:
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The PRF must pass through the conditional means,
so those values can be used to calculate the slope.

On average, the students increase their exam scores by 12
points for every additional hour of studying. You can
determine the intercept value (value of S when H = 0) by
extrapolating back to zero study hours, and then you can write
the PRF as E(S|H) = 23 +12H.

Figure 4-2 illustrates the data, conditional means, and PRF.
You can write the stochastic version of the PRF in Figure 4-2
as Si = 23 +12Hi +εi. This representation emphasizes that the
observed value for your dependent variable from an
observation picked at random is likely to be different from the
conditional mean for that group. Some students earn scores
above the conditional mean (positive random error) and some
below (negative random error).
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Figure 4-2: Population regression function with scatter plot
of individual population observations.

In most applications, you won’t have population
data. Consequently, you’ll need to make some sensible
assumptions about the model and work with sample data to
estimate your PRF. Because sample data may contain only
one Y value for a given X value, calculating conditional
means makes no sense and you’ll need to use a different
technique. That’s where Chapter 5 comes to the rescue. Head
there for details on estimating regression functions using
sample data.

Collecting and Organizing Data for Regression Analysis
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After you develop the econometric model and population
regression function that you’d like to estimate (as I describe
in the earlier section “Getting Acquainted with the Population
Regression Function (PRF)”), you must compile the data and
prepare it for regression analysis. In general, you’ll utilize one
of four types of data:

Cross-sectional

Time series

Panel (longitudinal)

Pooled cross-sectional

I cover each of these types of data in more detail in the
following sections.

Although most econometric techniques can be
applied to any data structure, some situations require
specialized techniques that allow you to deal with special
features of the data. Chapter 12 addresses issues that arise
mainly when you use time-series data; Chapters 16 and 17
cover methods that can be applied when you use panel
(longitudinal) data.

Taking a snapshot: Cross-sectional data

Cross-sectional data contains measurements for individual
observations (persons, households, firms, counties, states,
countries, or what have you) at a given point in time.
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A linear regression function using cross-sectional data is
typically written this way:

.

The i subscripts represent the individual units providing the
measurements for each variable.

You can use these types of models for testing microeconomic
hypotheses, so they tend to be popular in labor economics,
industrial organization, urban economics, and other
micro-based fields.

When using cross-sectional data, you assume that
the observations represent a random draw from your
population of interest. Sometimes the data for the individual
observations must be collected over a period of days or
weeks, but you can usually ignore these timing differences
with cross-sectional data.

Table 4-2 shows how you organize cross-sectional data in
preparation for estimating your econometric model. Note:
Econometric software programs typically require that the
variables be aligned in columns, with the observations (or
measurements) following in rows.

137



Source: www.imdb.com and
www.rottentomatoes.com

In order to save space, I skip from the fifth observation in the
data to the last observation (a procedure that I replicate in
some other tables). All of the other observations have the
same structure, so keep in mind that this dataset contains a
total of 115 observations.

Cross-sectional data is typically collected through
surveys. The most popular cross-sectional datasets include the
Current Population Survey (CPS), the American Community
Survey (ACS), and extracts from the decennial census. If your
research question is highly specialized, you may need to
devise your own survey and collect the cross-sectional data
needed for your analysis.
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Looking at the past to explain the present: Time-series data

Time-series data contains measurements on one or more
variables (such as gross domestic product, interest rates, or
unemployment rates) over time in a given space (like a
specific country or state).

A linear regression function using time series data is
generically written as

where the t subscripts represent the period of time in which
the measurement was observed.

You can utilize these models for identifying trends and
examining seasonal adjustments, so their use tends to be most
popular among macroeconomists (I cover these types of
econometric models in Chapter 15).

Patterns in time-series data can convey important
information, so make sure your data is organized in
chronological order. Also, when ordering the data, pay
particular attention to the frequency with which it was
collected. Typical frequencies are daily, weekly, monthly,
quarterly, or yearly. You’ll be able to use the ordering of the
data to identify trends and the frequency to examine changes
that are unique to specific periods (election year, holidays,
and so on).
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Table 4-3 shows how to organize time-series data concerning
labor force statistics in preparation for estimating your
econometric model. The variables should be aligned in
columns with a measurement for each unit of time. The
observations (or measurements) follow chronologically in
rows.

Source: www.bls.gov

Time-series data can be compiled by businesses, but
the most popular series are typically collected by government
agencies. The Federal Reserve, Census Bureau, Department
of Commerce, Department of Energy, and Bureau of Labor
Statistics are all excellent sources for time-series data.

Combining the dimensions of space and time: Panel or
longitudinal data

Panel data (also referred to as longitudinal data) contains a
time series for each cross-sectional unit in the sample. The
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data contains measurements for individual observations
(persons, households, firms, counties, states, countries, or
other) over a period of time (days, months, quarters, or years).
Consequently, panel data contains both cross-sectional and
time-series characteristics.

A linear regression function using panel data is generically
written this way:

The i subscripts represent the individual units, and the t
subscripts represent the period of time in which the
measurement was observed.

You can use these models to control for numerous
characteristics (both observed and unobserved) of the
cross-sectional units as well as lags and trends that may be
present over time. Consequently, both microeconomists and
macroeconomists use this type of data. (You can learn about
specific types of panel econometric models in Chapter 17.)

The collection of panel data begins with a random,
cross-sectional draw from your population of interest. Then
the same cross-sectional units are followed over a period of
time with some predetermined frequency.

Table 4-4 shows how you’d organize panel data (in this case
concerning the same 50 Major League Baseball players in
2003 and 2004) in preparation for estimating your
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econometric model. Your variables should be aligned in
columns, with the observations (or measurements) in rows.
The observations should be ordered so that data collected
over time is adjacent to each of your cross-sectional units.

Source: www.seanlahman.com

Panel data is typically collected through surveys.
The most popular panel datasets include the National
Longitudinal Survey (NLS), the Panel Study of Income
Dynamics (PSID), and the Survey of Income and Program
Participation (SIPP).

Joining multiple snapshots: Pooled cross-sectional data

If a cross sectional survey collects the same information on
multiple occasions from different individual units, you can
combine the data to create a pooled cross section. A pooled
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cross section combines independent cross-sectional data that
has been collected over time.

The advantage of pooled cross-sectional data is that
more observations tend to improve the accuracy of
econometric estimates and the added time element allows you
to explore both static and dynamic elements (I discuss some
applications using pooled cross-sectional data in Chapter 16).

Simply because your dataset contains both a
cross-sectional and time-series component doesn’t make it a
panel dataset. In some cases, you may be able to increase the
number of observations for your analysis by combining
randomly sampled cross sections of individuals collected in
different points in time, but it isn’t a panel dataset unless the
same individual units are observed in each subsequent time
period.

Treat pooled cross-sectional data simply as a larger version of
a cross-sectional dataset, because the data lacks the special
feature of observing the same cross-sectional unit on multiple
occasions. In Table 4-5, you’re working with pooled cross
section data for a random sample of Major League Baseball
players: 50 players from 2005 and 50 players from 2006. The
table shows how you would organize a pooled cross section
by year in preparation for estimating your econometric model.
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Source: www.seanlahman.com

You’ll want to keep track of the time period in
which you collected data for each individual unit.

In addition to increasing your observations, a pooled cross
section allows you to identify changes over time (on average
across all individual units) and observe policy analysis across
different time periods. To accomplish this, keep any variables
that track the time component.
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Chapter 5

Going Beyond Ordinary with the Ordinary Least Squares
Technique

In This Chapter

Getting acquainted with the least squares principle

Pinpointing the residuals

Estimating regression coefficients

Interpreting the magnitude of regression coefficients

Measuring the overall regression fit

Regression analysis refers to techniques that allow you to
estimate economic relationships using data. The method used
most frequently is commonly known as ordinary least
squares (OLS). In this chapter, you discover how to estimate
simple regression models with manual calculations and
computer calculations. You also find out how to interpret
simple and multiple regression models using output from
STATA.

Although the OLS technique is popular and
relatively simple (in comparison to other available methods),
the application of it through manual calculations can become
quite complicated when you start adding more independent
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(explanatory) variables to your regression model. You can
improve your understanding of the OLS technique by
working through the algebraic manipulations you see
throughout this chapter, but you must also learn how to apply
OLS using STATA with realistic models and real-world data.
(For more information on this software, see Chapter 1.)

Note: In this chapter I assume that you grasp the fundamental
difference between parameters and estimates/statistics (see
Chapter 3 for a review of these topics). I also assume that
you’ve thought about your need to perform regression
analysis (the goals of which I cover in Chapter 4).

Defining and Justifying the Least Squares Principle

When you need to estimate a sample regression function
(SRF), the most common econometric method is the ordinary
least squares (OLS) technique, which uses the least squares
principle to fit a prespecified regression function through your
sample data. The least squares principle states that the SRF
should be constructed (with the constant and slope values) so
that the sum of the squared distance between the observed
values of your dependent variable and the values estimated
from your SRF is minimized (the smallest possible value).

Although sometimes alternative methods to OLS
are necessary, in most situations, OLS remains the most
popular technique for estimating regressions for the following
three reasons:
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Using OLS is easier than the alternatives. Other
techniques, including generalized method of moments
(GMM) and maximum likelihood (ML) estimation, can be
used to estimate regression functions, but they require more
mathematical sophistication and more computing power.
These days you’ll probably always have all the computing
power you need, but historically it did limit the popularity of
other techniques relative to OLS.

OLS is sensible. By using squared residuals, you can
avoid positive and negative residuals canceling each other out
and find a regression line that’s as close as possible to the
observed data points.

OLS results have desirable characteristics. A desirable
attribute of any estimator is for it to be a good predictor.
When you use OLS, the following helpful numerical
properties are associated with the results:

• The regression line always passes through the sample means
of Y and X or .

• The mean of the estimated (predicted) Y value is equal to the
mean value of the actual Y or .

• The mean of the residuals is zero, or .

• The residuals are uncorrelated with the predicted Y, or

.

• The residuals are uncorrelated with observed values of the
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independent variable, or .

The OLS properties are used for various proofs in
econometrics, but they also illustrate that your predictions
will be perfect, on average. This conclusion follows from the
regression line passing through the sample means, the mean
of your predictions equaling the mean of your data values,
and from the fact that your average residual will be zero.

Estimating the Regression Function and the Residuals

The regression function is usually expressed mathematically
in one of the following ways:

Basic notation:

Summation notation:

Matrix notation (which I don’t use in this book):

The Y variable represents the outcome you’re interested in,
called the dependent variable, and the Xs represent all the
independent (or explanatory) variables (turn to Chapters 4 and
8 for information on how you go about determining which
variables to include). Your objective now is to estimate the
population regression function (PRF) using your sample data.
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When working on real-world econometric problems, you
usually specify a PRF with a dependent variable and several
independent variables. For example, suppose you’re
interested in the number of hamburgers purchased during the
lunch hour at school cafeterias. Microeconomic theory
suggests that sales should be influenced by the price of the
hamburgers along with other factors, such as the price of
other food items, the price of soft drinks, and so on. With that
in mind, you may want to specify your PRF using hamburger
sales as the dependent variable and all other relevant factors
as the independent variables.

To visualize the OLS regression and get a basic
understanding of the fundamental concept, assume now that
the dependent variable (hamburger sales) is influenced by
only one explanatory variable (the price of hamburgers).

The sample regression function (SRF) is expressed as
, where Y is hamburger sales and X is the

price. In this case, the SRF is a line, with the value for
estimating the intercept and estimating the value of the
slope.

Notice how the mathematical representation of the
SRF uses hats (^) above the coefficients and error term. I use
this symbol to denote that these numbers are estimates of their
true population values, but keep in mind that some textbooks
use English (Latin) letters to represent sample regression
coefficients and other estimates.
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Obtaining Estimates of the Regression Parameters

Before you start estimating regression coefficients using
mathematical tools, you can get a good idea of the
relationship between the intercept, slope, and the residuals by
examining the components of the sample regression function
graphically. Figure 5-1 shows a scatter plot of Y and X values,
the sample regression line (SRL) containing the estimated (or
predicted) Y values, and the estimated errors.

Figure 5-1: Graphical depiction of a simple regression with
one independent variable.

The regression line superimposed on the scatter plot in Figure
5-1 was derived using the ordinary least squares (OLS)
technique. You can imagine sketching a random line through
the points, calculating the sum of squared residuals (distance
from the observed values — the diamonds — to the line), and
moving the line and repeating this process until you find a
line placement that achieves the smallest possible value for
that sum. The problem is that you can make infinitely small
adjustments to the line placement, which means you’d be
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sketching lines forever trying to find that magical value.
Fortunately, a mathematical solution to this problem exists.
Simply determine the formulas necessary to find the
coefficient values and then calculate, as explained in the
following sections. You get a regression line based on
estimates that are great — in fact, they’re perfect, on average.

Finding the formulas necessary to produce optimal coefficient
values

Changes to a regression line also change the residuals
(distance from the observed values to the line). The more
appropriate the values you choose for the intercept and slope
of that line, the smaller the squared residuals. If the value of
the regression coefficients is inappropriately large or small,
the squared residuals will be too large.

Figure 5-2 illustrates how the sum of squared residuals can
respond to changes in coefficient values. The coefficient
value is measured along the horizontal axis, and the sum of
squared residuals is represented by the vertical axis. If the
value of the regression coefficient is too low, the line won’t
have a good fit and the sum of squared residuals will be high.
The same outcome occurs if the value of the regression
coefficient is too high. Note: Your regression may consist of
several coefficients (an intercept and slope coefficients), so
this graph is a two-dimensional simplification.
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Figure 5-2: An optimal set of coefficient values achieves the
smallest sum of squared residuals.

The objective of OLS is to produce those optimal regression
coefficients. Because the coefficients have an infinite number
of possible values, you can’t rely on eyeballing it. Math to the
rescue!

You can write the objective of OLS this way:

which can be rewritten as

where is the estimated (or predicted) Y value from the
regression. The final step in setting up the derivation of the
regression coefficients is to substitute the equation of the SRL
for the predicted Y values to obtain
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From here, you can use calculus to differentiate this equation
with respect to the first regression coefficient (β0) and set it
equal to zero; then differentiate with respect to the other
regression coefficient (β1) and set it to zero. The result is two
equations with two unknowns. Using algebra, you can then
solve for the two regression coefficients.

The calculus and somewhat complicated algebraic
manipulations result in easy-to-use formulas for calculating
the regression coefficients (estimates of the slope and
intercept). Calculate the slope first with

Then calculate the intercept with .

As you can see from the formulas, you need to first use the
sample data to calculate the mean of the dependent variable (

) and the mean of the independent variable ( ).

Calculating the estimated regression coefficients

After you have the formulas for the coefficients that achieve
the smallest sum of squared residuals, you’re ready to start
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calculating either by hand or by using computer software. I
cover both methods in the following sections.

Man and machine can produce the same results, but
the machines allow you to produce results much more
quickly.

Doing the math by hand

If you’re going to be performing OLS estimation
calculations by hand, I strongly recommend using a table to
keep yourself organized. You’re less likely to make mistakes
this way.

Table 5-1 contains sample (or raw) data on hamburger sales
(Y) and price (X) at five different school cafeterias (i). Each
variable is housed in a column, and each observation is
located in a row. Columns 1, 2, and 3 contain your sample
data, and Columns 4, 5, 6, and 7 contain the intermediate
calculations you use to arrive at the OLS regression
coefficients.

154



Using Table 5-1, you can estimate the following regression
coefficients:

The resulting SRF or equation of the line is .

When you’re computing regression coefficients by
hand, you can use the properties and to check your
calculations. Alternatively, as shown in Figure 5-3, you can
use STATA to estimate the regression coefficients and simply
check your final answer.
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Figure 5-3: STATA results using the OLS regression
technique.

As you work through your table, periodically pause
to make sure your intermediate calculations are correct. I’m
sure you recall from statistics that the sum of deviations from
the mean must be equal to zero. Then, you know that a zero
must appear at the bottom of Columns 4 and 5. Always make
sure you meet this requirement before you continue with your
final calculations.

Computing on the computer

When you want to perform a regression with several
independent variables, the formulas for calculating the
regression coefficients become increasingly complex and
typically require matrix algebra. Of course, more observations
(sample points) also make manual calculations tedious. You’ll
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want to let computer software do the heavy lifting for you in
these cases.

Econometric software is not only useful with a
simple regression model but also absolutely essential when
you include additional independent variables and/or use data
with numerous observations. STATA, one of the most
popular econometrics software programs, can immediately
produce the regression results you seek.

In order to truly appreciate the capability of the computer and
the specialized software to generate regression results, take a
look at a multiple regression (a regression model that contains
more than one explanatory variable).

A movie studio is interested in gaining a better understanding
of movie success. The studio execs provide you with a dataset
containing 580 observations (movies). For each movie, you’re
given its box office revenue (in millions of dollars) and a
measure of film quality through viewer approval (measured
on a scale that can go from 0 to 100 percent viewer approval)
and its budget (in millions of dollars). Table 5-2 provides a
snapshot of the data for 10 of the 580 movies.
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Source: www.imdb.com and
www.rottentomatoes.com

You use the complete dataset (containing all 580
observations) to perform an econometric analysis. With your
understanding of economic theory, you determine that movie
revenue is likely to depend on the quality of the film as
perceived by moviegoers along with the studio’s efforts to use
well-known actors, cutting-edge special effects, exotic
locations, and so on. Given the available data, you determine
that both viewer ratings and the film’s budget are sensible
explanatory variables.

You use the OLS technique to produce the results, but
because of the number of explanatory variables and
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observations, you want to rely exclusively on the computer
for the calculations.

Using two X variables (X1 is viewer approval rating
and X2 is budget), you can quickly obtain the multiple
regression results in Figure 5-4.

Figure 5-4: STATA multiple regression output for the movie
revenue example.

With these results, you’re now prepared to provide the movie
studio with some insights into film success — provided you
know how to interpret the output. I explain how to do just that
in the next section.

Interpreting Regression Coefficients

In most cases, you estimate a regression with the hope of
gaining insight into the behavior of some phenomenon that
interests you. The primary strength of regression analysis is
being able to identify what factors affect that phenomenon
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and the magnitude of their effect. This information is
powerful. Use it! The following sections explain how.

Seeing what regression coefficients have to say

Slope coefficients tell you the estimated direction of the
impacts (positive/increase or negative/decrease) that your
independent variables have on your dependent variable. They
also tell you by how much your dependent variable changes
(value or magnitude) when one of your independent variables
increases or decreases.

The slope coefficient measures the change in your dependent
variable for a 1-unit change in your explanatory variable.
Suppose you calculate the following regression results using
data on hamburger sales and prices from school cafeterias.

The slope coefficient is –19.3, which implies that a 1-unit
increase in X is associated with a 19.3-unit decrease in Y.
More specifically, the slope in this example implies that a $1
increase in the price of hamburgers results in about 19 fewer
hamburgers being sold. The literal interpretation of the
intercept coefficient is the value of the dependent variable
when the explanatory variables are all equal to zero. In the
hamburger sales example, you would estimate hamburger
consumption to be about 120 (119.7 ≈ 120) units if the school
cafeterias were serving them for free or price was zero
dollars.
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Ignoring the intercept term in real-world scenarios

Problems in econometrics textbooks may ask you about
the intercept term, but it’s usually ignored in applied
work, because situations where all of the explanatory
variables equal zero are unlikely to occur. In applied
situations, you’re estimating regressions with two or
more explanatory variables. If you want to obtain an
accurate estimate of a variable’s marginal effect on your
dependent variable, then you need to make sure you
adequately control for other factors that may
simultaneously affect your variable of interest. Ignoring
other variables can result in biased regression results (a
topic I cover later in Chapter 8).

When you estimate a regression model with two or
more independent (explanatory) variables, you have a
multiple regression and the coefficients are called partial
slope coefficients. Partial slope coefficients provide an
estimate of the change in the dependent variable for a 1-unit
change in the explanatory variable, assuming the value of all
other variables in the regression model hold constant. The
goal here is to disentangle the effects that numerous variables
may have on the outcome of interest and isolate their impact.

If you refer to the preceding section’s example of estimating
movie revenue, you can see an interpretation of coefficients in
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the multiple regression. The STATA results (
) shown in Figure 5-4 suggest that

a percentage-point increase in the viewer rating increases
movie revenue by $0.41 million ( ) (or $410,000),
holding movie budget constant. Also, a $1 million increase in
the movie budget increases film revenue by $1.11 million (

) (or $1,110,000), holding viewer rating constant.

When interpreting the results of multiple
regressions, make sure you’re using the units in which the
variables are measured. For example, if X1 represents viewer
ratings and viewer ratings are measured as a percentage, you
need to remember that a percentage point is 1 unit. People
looking at your work may not know (or may not remember)
how the variables are measured, so without the appropriate
units, any value is difficult (if not impossible) to interpret
accurately. Note: Because the variables used in your
regression analysis aren’t likely to all be measured in the
same units, try to avoid comparing coefficient values for
different variables.

Standardizing regression coefficients

Comparing coefficient values is not as straightforward as you
may first think. Here are a few reasons why:

In standard OLS regression, the coefficient with the
largest magnitude is not necessarily associated with “the most
important” variable.
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Coefficient magnitudes can be affected by changing the
units of measurement; in other words, scale matters.

Even variables measured on similar scales can have
different amounts of variability.

For some variables, a unit change may represent a large
amount, whereas it may be of marginal importance for other
variables. Suppose you’re examining the success of college
students through their grade point averages. You may
hypothesize that high school grade point average (GPA) and
SAT score helps you predict college success. If you estimate
a multiple regression, the coefficient for SAT score is much
smaller than the coefficient for GPA. The reason is not
because SAT has a smaller impact (even though it may) but
because a 1-unit change in SAT score is insignificant in
comparison to a 1-unit change in GPA.

If you want to compare coefficient magnitudes in a multiple
regression, you need to calculate the standardized regression
coefficients. You can do so in two ways:

Calculating a Z-score for every variable of every
observation and then performing OLS with the Z values rather
than the raw data

Obtaining the OLS regression coefficients using the raw

data and then multiplying each coefficient by

Start by modifying the original SRF:
.
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Then subtract the average value of each variable from every
observation to get this equation:

Notice that the constant drops out from the right-hand side of
the equation because you’re basically subtracting 1 from 1.
Next, divide both sides by the estimated standard deviation of
the dependent variable:

The preceding equation takes advantage of one of the
desirable OLS properties, namely that the average residual is
zero (for the rest of the desirable OLS properties, see the
earlier section “Defining and Justifying the Least Squares
Principle”). A little mathematical manipulation ensures that
you’re still performing the same operation to both sides of the
equation, which allows you to arrive at the final step

, where you’ve defined the

standardized regression coefficients as .

Standardized regression coefficients are also known
as beta coefficients. This convention can be confusing,
because the Greek letter beta is also used for the regular OLS
coefficients. Unfortunately, this terminology has been
commonly adopted by econometricians and most textbooks.
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In practice, you rely on the econometrics software
to calculate the standardized regression coefficients. For
instance, in the movie revenue example, you select Statistics
? Linear models and related ? Linear regression from the
menu bar or type “regress Y X1 X2, beta” on the STATA
command line to produce the results shown in Figure 5-5.

Figure 5-5: STATA output with standardized (or beta)
coefficients and regular OLS coefficients.

Regular OLS coefficients and standardized
regression coefficients do not have the same meaning. The
standardized regression coefficient estimates the standard
deviation change in your dependent variable for a
1-standard-deviation change in the independent variable,
holding other variables constant.

Using the results from Figure 5-5 (column labeled beta), you
can say that a 1-standard-deviation increase in viewer ratings
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increases revenue by 0.15 standard deviations if you hold the
film budget constant. A 1-standard-deviation increase in film
budget increases movie revenue by 0.69 standard deviations,
holding viewer ratings constant. Because you’re now using a
standard deviation change for all the explanatory variables,
you can compare the beta coefficients. Consequently, you can
also say that the impact of movie budget on revenue is about
five times larger than that of viewer ratings.

Measuring Goodness of Fit

After you’ve estimated a regression, you need to be able to
gauge how well that regression fits the data. In most settings,
a measure of fit compares the predicted values of the
dependent variable, which you get by using the estimated
regression function, to the actual values of the dependent
variable in the data.

To properly measure goodness of fit, you first need to break
down, or decompose, the variation in the dependent variable
into explained and unexplained (or residual) parts. Then (in
most cases) you can go about using the coefficient of
determination, also known as R-squared, to determine fit.
However, R-squared doesn’t always indicate the quality of
what the regression is telling you. In this section I walk you
through each step of measurement.

Decomposing variance

If the value of the dependent variable were similar for every
observation (regardless of the values of other variables), then
a prediction equal to the average value would be sensible and
you’d have no reason to complicate your life with regression
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analysis. But the very reason you perform regression analysis
is because quite a bit of variation can exist between one
observed value and another. Using economic theory and
common sense, you develop a regression model that
(hopefully) helps you explain why some of that variation
exists.

The variation in your dependent variable can be decomposed,
or separated, into different pieces. In econometrics,
decomposing variance means that you take all the variation in
your dependent variable and separate it into a part that’s
explained by your regression and a part that remains
unexplained.

Figure 5-6 illustrates some sample data points: the mean
value of the dependent variable (at the dashed horizontal
line), an observed Y value (at the dot), and the estimated
regression line. You can see how variation in the dependent
variable (the difference between the observed Y value and the
mean value) can be decomposed into two parts; One is the
contribution of your regression analysis in explaining this
variation (the difference between the regression line and the
mean value) and the other part is unexplained or residual
variation (the difference between the observed Y value and the
regression line).
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Figure 5-6: The variation in the dependent variable can be
decomposed into explained and unexplained (or residual)
parts.

Consider one randomly chosen observation so you can
examine the variation of the observed value from its mean.
The distance of an observation from its mean can be

characterized by .

The left-hand-side is the total difference, but some of that
difference is explained by the regression (or independent
variable). The independent variable’s influence on variation is
the first component on the right-hand-side of the equation.
The second component is what remains unexplained. It’s
what you already know as the residual, which means you can

rewrite the equation as .

The decomposition of variation into explained and residual
components for one observation must be extended to the
entire sample in order to provide a measure of overall fit.
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Measuring proportion of variance with R2

The measure of fit most commonly used with OLS
regression is the coefficient of determination, which is more
commonly known as R-squared. R-squared measures the
proportion of variation in the dependent variable that’s
explained by variation in the independent variables. Because
it’s a ratio, its value must be between 0 and 1.

You calculate R-squared by generalizing the decomposition

in so that it includes all the observations in
the data. In order to avoid positive and negative residuals
from canceling each other out, you must square both sides of
the equation and then apply summation to include all the
observations.

This manipulation of summing and squaring plus a few
algebraic steps ultimately provide a measure for each
component of variance, as seen in the following equation:

The left-hand-side is called the total sum of squares (TSS),
and the right-hand side is the sum of the explained sum of
squares (ESS) and residual sum of squares (RSS). If you
write this equation out and perform one additional algebraic
manipulation, you end up with the formula for the R-squared
value.
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The ratio on the left-hand side measures the
explained variation as a fraction of the total and is, therefore,
the R-squared value.

Because the OLS technique seeks to minimize the RSS, it’s
essentially fitting the line (or function) that maximizes the
R-squared value.

Returning to the movie revenue example and the regression
results in Figure 5-4, you see that the R-squared value is
included in any standard regression output. With the reported
value of 0.5180, you can say that 51.8 percent of the variation
in movie revenue is explained by viewer ratings and film
budget.

Adjusting the goodness of fit in multiple regression

A surefire way to increase R-squared (or regression fit) is to
add more explanatory variables to the model. If you examine
the following formula for the R-squared value, you can see
why this is the case.
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Suppose you begin with a model that has one explanatory
variable. The regression produces certain values for the
residuals (RSS) and, consequently, some R-squared value.
Now, imagine that you add another explanatory variable to
the model. This new explanatory variable can help you
explain more of the variation in the dependent variable (RSS
decreases) or be of no use at all (RSS remains the same). It
can’t, however, take away any ability that the first
explanatory variable has in explaining variation in the
dependent variable.

If you increase the number of explanatory variables
in a regression model, your R-squared value increases or
remains the same (if the additional variable has no impact on
the dependent variable), but it can never cause your
R-squared value to decrease.

You may be tempted to continue adding more variables and,
as a result, increase the R-squared value. However, doing so
has a cost. When you add more variables, you lose degrees of
freedom (the number of observations above and beyond the
number of estimated coefficients). Fewer degrees of freedom
make your estimates less reliable (for more on this topic, turn
to Chapter 6). This issue is addressed with adjusted
R-squared, which is defined as
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where RSS is the residual sum of squares, TSS is the total sum
of squares, n is the number of observations, and p is the
number of independent variables in the model.

When additional variables are added to the
regression, adjusted R-squared can increase, remain the same,
and even decrease depending on whether the increase in
R-squared is large enough to outweigh the loss in degrees of
freedom (increase in p). If it is, the adjusted R-squared value
increases. If not, adjusted R-squared remains the same or
decreases.

Because the adjusted R-squared equation includes the degrees
of freedom “penalty” for additional explanatory variables,
sometimes researchers compare the fit of various models with
the adjusted R-squared rather than the unadjusted R-squared.

In order to compare two models on the basis of
R-squared (adjusted or not), the dependent variable and
sample size must be the same.

Evaluating fit versus quality

Although regression fit is important and R-squared is a
commonly reported result, it is only one measure of
regression quality.
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Here are a few reasons why you shouldn’t use
R-squared (adjusted or not) as the only measure of your
regression’s quality:

A regression may have a high R-squared but have no
meaningful interpretation because the model equation isn’t
supported by economic theory or common sense.

Using a small dataset or one that includes inaccuracies
can lead to a high R-squared value but deceptive results.

Obsessing over R-squared may cause you to overlook
important econometric problems.

In economic settings, a high R-squared (close to 1)
is more likely to indicate that something is wrong with the
regression instead of showing that it’s of high quality.

High R-squared values may be associated with regressions
that violate assumptions (which I cover in Chapter 6) and/or
have nonsensical results (coefficients with the wrong sign,
unbelievable magnitudes, and so on.). When evaluating
regression quality, give these outcomes more weight than the
R-squared.
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Chapter 6

Assumptions of OLS Estimation and the Gauss-Markov
Theorem

In This Chapter

Defining the assumptions of ordinary least squares (OLS)
regression

Illustrating the difference between good and bad statistical
estimates

Understanding the role of each OLS assumption in proving
the Gauss-Markov theorem

Econometricians seek to find the best way to estimate
economic relationships. That best method depends on what
they think the relationship is between the variables and on
what type of data is being utilized for the analysis. In this
chapter, I discuss the assumptions of the most basic technique
used in applied econometrics, the ordinary least squares
(OLS) technique, and explain how the assumptions are
important in producing reliable results.

OLS is the most popular method of performing regression
analysis because in standard situations, its results are optimal.
In this chapter, you discover exactly which assumptions
define a standard situation in econometrics and which
characteristics classify an estimation technique as optimal.
You also find out the role of technical assumptions in
showing that OLS achieves those criteria. (Note: I’m
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assuming you already have a basic understanding of
regression mechanics and are familiar with how to interpret
OLS results, but if you need to review these concepts, you
can turn to Chapter 5.)

Characterizing the OLS Assumptions

When deciding whether OLS is the best technique
for your estimation problem, some requirements must be met.
They’re called the OLS assumptions or the classical linear
regression model (CLRM). Here’s the complete set:

The model is linear in parameters and has an additive
error term.

The values for the independent variables are derived from
a random sample of the population and contain variability.

No independent variable is a perfect linear function of any
other independent variable(s) (no perfect collinearity).

The model is correctly specified and the error term has a
zero conditional mean.

The error term has a constant variance (no
heteroskedasticity).

The values of the error term aren’t correlated with each
other (no autocorrelation or no serial correlation).
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If you encounter a situation where one (or more) of the
CLRM assumptions fails, then OLS may not be the best
estimation technique. When that occurs, econometricians
typically propose some precise modification to the OLS
technique or offer a completely different alternative.

In applied situations, some assumptions are violated more
frequently than others. I devote entire chapters to a discussion
of the methods used to detect when those specific
assumptions fail and how to proceed if they do. Specifically, I
tackle collinearity in Chapter 10, heteroskedasticity in
Chapter 11, and autocorrelation in Chapter 12. In the
following sections, however, I explain the facets of the
CLRM so you know exactly what you’re assuming about
your model and/or dataset when you use OLS estimation.

Linearity in parameters and additive error

When a model is linear in parameters and has an additive
error term, it typically means that you can write the
population regression function (PRF) as Yi = β0 + β1Xi1 +
β2Xi2 + … + βpXip + εi, where Y is your dependent variable,
the Xs are your independent variables, the βs are your partial
slope coefficients (parameters of interest), and ε is your
random error term.

A model doesn’t have to be a linear function in
order to satisfy the linear in parameters assumption. A couple
examples of nonlinear functions that are linear in parameters
include
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You can estimate these types of models using the OLS
technique.

However, you can’t use OLS to estimate a model
that isn’t linear in parameters, like the function

.

When the parameters (βs) you’re trying estimate are in the
exponents of the function, OLS can’t be used. In some cases,
you can perform a log transformation to linearize the function
and then use OLS (I discuss this topic in Chapter 8).
However, in many scenarios, the log transformation may not
work or won’t be feasible.

Other techniques, such as maximum likelihood (ML)
estimation, can be used when the function you need to
estimate is not linear in parameters. Specific examples of
models that are nonlinear in parameters and the use of ML
estimation are discussed at length in Chapters 13 and 14.

Random sampling and variability
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Strictly speaking, the CLRM assumes that the
values of the independent variables are fixed in repeated
random samples. In other words, every sample from a given
population is assumed to contain the same values for the
independent variables even though the values of the
dependent variable change from sample to sample. This
assumption can be, and is often, weakened. The more
common version of the assumption is that the values of the
independent variable are random from sample to sample but
independent of the error term. The weaker version is
equivalent asymptotically (with large samples) because the
likelihood that you’re missing relevant values for the
independent variables decreases as the sample size increases.

You need variation in the independent variable to estimate its
regression coefficient. If it has no variation, the coefficient for
that variable is undefined.

This assumption isn’t likely to hold when you use
lagged values of your dependent variable as an independent
variable (autoregression; see Chapter 15 for details on this
topic) or when the value of your dependent variable
simultaneously affects the value of one (or more) of your
independent variables (simultaneous equations). Therefore,
OLS is inappropriate in these situations. You must modify it
or use something else anytime one or more assumptions don’t
hold.
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Imperfect linear relationships among the independent
variables

In econometrics, you want to avoid using data in situations
where two (or more) of your independent variables have exact
relative movements. When changes in the value of one
independent variable are matched by a relative movement
(positive or negative) in one or more of your other
independent variables, you have a multicollinearity (or perfect
collinearity) problem and you can’t estimate the model with
those variables included in the regression.

For example, suppose I have a dataset with five observations
and two variables (X1 and X2). The values for X1 are 2, 5, 6,
10, and 12, and the values for X2 are 7, 13, 15, 23, and 27.
These two variables exhibit perfect collinearity because X2 =
2X1 + 3. This is one type of linear function, but there are
many possibilities.

You can have a multicollinearity problem even if
the units of measurement for the variables are quite different.
The relative relationship is what causes multicollinearity, not
the absolute relationship.

A perfect collinear relationship between two independent
variables, X1 and X2, could be expressed as X2 = α0 + α1X1,
where α1 captures the relative co-movement of the two
variables.
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Usually, multicollinearity with more than two
variables occurs because you create new variables and fail to
account for their relationship when including them in your
regression model. Be careful not to create variables that are
perfect linear functions of other variables.

Suppose I want to explain earnings differentials among
workers in a population where individuals attend school or
work (they’re never unemployed or without work). I want to
use workers’ wages as my dependent variable with age (X1),
years of education (X2), and years of work experience (X3) as
the independent variables. Because individuals work
immediately when they finish school in the population, I
create a work experience variable by subtracting 6 (the
assumed age when they started school) and their years of
education from their age. So their work experience is X3 = X1
– X2 – 6.

This equation expresses a perfect collinear relationship,
because when age increases, so does experience (holding
other variables constant). Similarly, if years of education
increase, then experience decreases (holding other variables
constant). Avoid creating these types of variables unless you
plan on using the newly created variable in place of one of the
others. For example, you may want to use the experience
variable instead of age in the regression.
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If you have perfect collinearity, the software
program you use to calculate regression results can’t estimate
the regression coefficients. The reason for this is that perfect
collinearity causes you to lose linear independence and the
computer can’t identify the unique effect of each variable
because they move in unison with one another.

If you don’t have perfect collinearity, you’re not out
of the woods just yet. High collinearity, which occurs when
there’s a strong relationship (as opposed to a perfect
relationship) between two or more independent variables, can
also be problematic. In applied cases, high collinearity is
much more common than perfect collinearity. I discuss this
issue in Chapter 10.

Error term has a zero conditional mean; correct specification

Your error term has a zero conditional mean when, for any
given value for independent variable(s), the average value of
the error is zero. (Reminder: The error term is the difference
between the actual value of the dependent variable and the
value from the population regression function.)You can write
this mathematically as E(ε|Xi) = 0.

181



If the conditional mean of the error is zero, that
implies that no relationship (or correlation) can exist between
the error term and the X values. The assumption that E(ε|Xi) =
0 is one of the CLRM assumptions that may fail if you have

Misspecification: This occurs when you fail to include a
relevant independent variable or you use an incorrect
functional form. Specification issues are addressed in detail in
Chapter 8.

A restricted dependent variable: In other words, you’re
using a qualitative or limited dependent variable. For
example, you may be interested in modeling the outcome of a
yes/no response from a survey (qualitative data measured with
a 1 or 0 value), or you may want to explain injury rates on
professional football teams (limited data measured on a
percent scale from 0 to 100). Qualitative dependent variables
are discussed in Chapter 13, and limited dependent variables
are examined in Chapter14.

Figure 6-1 provides a comparison of a situation when the
E(ε|Xi) = 0 assumption holds and when it fails. The graph on
the left side of Figure 6-1 illustrates a situation where the
mean of the error is zero at any X value. However, the graph
on the right side of Figure 6-1 displays a scenario in which
the mean of the error is not zero at all X values.
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Figure 6-1: Regression function with a zero conditional mean
error term (a) and with a nonzero conditional mean (b).

Sometimes the assumption E(ε|Xi) = 0 is confused
with the notion that the average residual (estimated error) is
zero . Even if the overall mean of the residual is
zero , the conditional mean of the error E(ε|Xi) may
not be zero.

Error term has a constant variance

The CLRM also relies on the variance of the error
term being constant. Homoskedasticity refers to a situation in
which the error has the same variance regardless of the
value(s) taken by the independent variable(s).
Econometricians usually express homoskedasticity as

. In Figure 6-2, I show the regression of a
model satisfying the CLRM assumptions and a graphical
depiction of homoskedasticity. Notice when the error term is
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homoskedastic, the dispersion of the error remains the same
over the range of observations.

Figure 6-2: A model with a constant (homoskedastic) error
variance.

If the error term is heteroskedastic, the dispersion
changes over the range of observations. Heteroskedasticity
occurs when the variance of the error term changes in
response to a change in the value(s) of the independent
variable(s). Econometricians typically express
heteroskedasticity as .

In Figure 6-3, I graph a situation where heteroskedasticity is
present. The pattern depicted in Figure 6-3 is only one among
many possible patterns. Any error variance that doesn’t
resemble that shown in Figure 6-2 is likely to be
heteroskedastic.
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Figure 6-3: A model with a changing (heteroskedastic) error
variance.

Heteroskedasticity is a common problem for OLS
regression estimation, especially with cross-sectional and
panel data. You usually have no way of knowing in advance
if it’s going to be present, but there are several tests to check
for it and several ways to correct if you find evidence of it in
your regression. Turn to Chapter 11 for the full scoop on
these heteroskedasticity topics.

Correlation of error observations is zero

The observations are assumed to be randomly
drawn, so the error values should be independent and not
related to one another. If the errors have a relationship, then
you have autocorrelation (or serial correlation) and have
violated a CLRM assumption. Here’s what it looks like when
the assumption holds:
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and when it fails:

where ε represents the error term, while the t and s subscripts
identify the time period in which the error is observed.

In Figure 6-4, I use time-series data to show a scatter plot of
the possible error values in t and t – 1. In this figure, the
assumption of no autocorrelation holds (Cov(εt, εs) = 0). How
can you tell? Well, when no autocorrelation exists, you can’t
see a clear relationship between the error values.

Figure 6-4: A model with no autocorrelation.

If autocorrelation does exist, you may find that it’s positive
(Cov(εt, εs) > 0), as in the example in Figure 6-5. When you
have positive autocorrelation, positive error values tend to be
followed by other positive errors, and vice versa.
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Figure 6-5: A model with positive autocorrelation.

Another possibility is negative autocorrelation (Cov(εt, εs) <
0), like the case in Figure 6-6. When you have negative
autocorrelation, a positive error value tends to followed by
negative errors, and vice versa.

Figure 6-6: A model with negative auto-correlation.
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Autocorrelation can be quite common when you’re
estimating models with time-series data, because when
observations are collected over time, they’re unlikely to be
independent from one another. In other words, if something
occurs today, its influence isn’t likely to be completely
absorbed today. (For more details on autocorrelation, see
Chapter 12.)

Relying on the CLRM Assumptions: The Gauss-Markov
Theorem

Most theorems in statistics and mathematics rely on a set of
assumptions, and the Gauss-Markov theorem is no different.
It relies on the CLRM assumptions I walk you through earlier
in this chapter.

The Gauss-Markov theorem states that the ordinary
least squares (OLS) estimators are the best linear unbiased
estimators (BLUE) given the assumptions of the classical
linear regression model (CLRM).

The following material shows how each component of the
Gauss-Markov theorem is derived. I devote one section to
each of the first three letters in BLUE (best, linear, and
unbiased), although not in that order.

Proving the Gauss-Markov theorem
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To understand why OLS is best in some situations, you may
find it useful to see how each component of the
Gauss-Markov theorem is derived. The following sections
illustrate each part of the theorem’s proof using a simple
regression model (with one independent variable). In each
part of the proof, I draw your attention to the importance of at
least one of the CLRM assumptions.

In graduate econometrics courses, the proof of the
Gauss-Markov theorem is often extended to the multivariate
case. You need to be comfortable with matrix algebra before
you go there.

Linearity of OLS

In the sample regression function (SRF) , the
estimators are calculated with the following formulas

If you don’t recall how these formulas are derived, you can
refresh your memory in Chapter 5.

The proof of the linearity property can be simplified by
defining
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I begin by working with and substituting with ci to get

The ci can be treated as constants because, according to one
of the CLRM assumptions, the X values in repeated random
sampling are the same. Consequently, is a linear
combination of the observed Y values.

I proceed in a similar fashion with and substitute for to
get

Using ci, I simplify this to

and with one more algebraic step, I arrive at
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which shows that is also a linear function of the Y values.

In the sample regression function , the
terms are linear estimators because they are linear

combinations of the observed values for the dependent
variable (Yi).

Expected value of OLS coefficients

In the sample regression function (SRF) , the
estimators are calculated with the following formulas:

If you take and substitute the population regression
function (PRF) for Yi, you get

After several algebraic manipulations, you can arrive at
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Then apply the expectations operator to both sides:

and using expected value properties (see Chapter 2), work
through the following steps:

The CLRM assumption that the conditional mean of the error
is zero implies that no relationship exists between the error
term and the X values, so

Cov(ε, X) = 0. Therefore, the slope coefficient is unbiased

because .

Now you can work with the intercept term and begin with this
formula:
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Using the property that the regression line must pass through
the means of X and Y, substitute for and get

Then you can apply the expectations operator to both sides:

and after a few algebraic manipulations, you get

You simplify this expression by using the fact that

and to complete the proof:
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In the sample regression function , the
terms are unbiased because on average they equal their true

parameter values; and .

In Figure 6-7, you can see the difference between a biased
and an unbiased estimator of regression coefficients.

Figure 6-7: Distribution of coefficient estimates for a biased
and unbiased estimator.

If an estimator is unbiased, it doesn’t mean .

Instead, it means that . You can see in Figure 6-7 that
the estimated coefficients from some random sample are not
likely to equal their true value. However, on average, the
estimates equal the true value.
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Variance of OLS coefficients

In the sample regression function (SRF) , the
estimators are calculated with the following formulas:

The OLS estimators are linear functions of the observed
values, so you can write their formulas this way:

where

for . I focus on the slope term and define an
alternative estimator:

where wi doesn’t necessarily equal ci. I substitute the SRF
into this equation and apply the variance operator to both
sides and get
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Here, utilize the CLRM assumption that X is fixed in repeated
samples and the property that X is not correlated with the
error term to get

Using the CLRM assumptions of homoskedasticity (constant
variance) and no autocorrelation (no correlation among the
error values), you can write the variance of as

After several algebraic steps, you can rewrite the variance of
as

If you let

then
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If you allow wi ≠ ci so that the estimator is something other

than OLS, then .

In the sample regression function , the
terms are efficient (in other words, best) because their

variance is the smallest among all such estimators.

In Figure 6-8, I illustrate the difference between a more
efficient and less efficient estimator.

The variance of your OLS estimators is influenced
by a three factors:

The variance of the error term, : The larger the
variance of the error, the larger the variance of the OLS
estimates and vice versa (holding everything else constant).

The variance of X, : The larger the sample
variance of X, the smaller the variance of the OLS estimates
and vice versa (holding everything else constant).

Multicollinearity: As the correlation between two or
more independent variables approaches 1, the variance of the
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OLS estimates becomes increasingly large and approaches
infinity.

Figure 6-8: Distribution of coefficient estimates for two
unbiased estimators with different variance.

The efficiency characteristic of an estimator is not
only relevant with unbiased estimators. Even if an estimator is
biased, more efficiency (less variance) can be valuable if the
bias is small.

In Figure 6-9, I illustrate an unbiased estimator that isn’t very
efficient and a biased estimator that is much more efficient.
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Figure 6-9: Distribution of coefficients for an unbiased
estimator with a large variance and a biased estimator with a
small variance.

Even though the estimator β+ in Figure 6-9 is biased, you’d
have a better chance of producing an estimate that is close to
the true value with β+ than you’d have with . In some cases,
econometricians have to weigh the cost of using a biased
estimator against the benefits of using a more efficient
estimator.

In practice, you’re probably going to get only one
sample to estimate your regression coefficients. In that case,
you want to maximize your chances of producing an estimate
that’s close to the true parameter value. A more efficient
estimator increases the probability that an estimate from a
single sample is close to the true value.
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OLS coefficients: Best when BLUE

Given the assumptions of the CLRM, the OLS
estimators (or coefficients) are best linear unbiased estimators
(BLUE).

Best means achieving the smallest possible variance
among all similar estimators.

Linear indicates that the estimates are derived using linear
combinations of the data values.

Unbiased means the estimators (coefficients) on average
equal their true parameter values.

When you put all these pieces together, you have the
Gauss-Markov theorem.

When judging how good or bad an estimator is,
econometricians usually evaluate the amount of bias and
variance of that estimator. The BLUE property of OLS
estimators is viewed as the gold standard. When a CLRM
assumption fails (which happens regularly in applied
situations), you either have to adjust OLS for that failure or
use an entirely different estimation technique.

Econometricians have devised methods to deal with
failures of the CLRM assumptions, but they aren’t always
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successful in proving that the alternative method produces a
BLUE. In those cases, they usually settle for an asymptotic
property known as consistency. Estimators are consistent if,
as the sample size approaches infinity, the variance of the
estimator gets smaller and the value of the estimator
approaches the true population parameter value.

Summarizing the Gauss-Markov theorem

Each part of the Gauss-Markov theorem relies on at least one
CLRM assumption. In Table 6-1, I list the CLRM
assumptions required to show that OLS estimators are BLUE.
I also indicate their use in proving each part of the theorem,
typical violations, and in which chapter I cover specific
violations of CLRM assumptions.
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Chapter 7

The Normality Assumption and Inference with OLS

In This Chapter

Understanding what the normal distribution implies

Deriving hypothesis testing procedures for regression
coefficients

Determining whether regression results are statistically
significant

Using the normal distribution to determine forecast/
prediction error

When you use ordinary least squares (OLS) regression for
hypothesis testing and/or prediction and forecasting, you
always assume that the distribution of the unobserved error is
normal. However, the idea of assuming a normal distribution
is often misunderstood. That’s what this chapter clears up. It
helps you understand precisely how a normal distribution is
used in econometrics and the importance of the normality
assumption for tests of statistical significance and calculations
of forecast error. You also get to check out some example
scenarios in which the assumption is likely to be reasonable
and others for which it’s likely to fail.

Note: In this chapter, I assume that you already have a basic
understanding of regression mechanics and are familiar with
interpretation of OLS results. If you need to review these
concepts, please refer to Chapter 5.
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Describing the Role of the Normality Assumption

The normality assumption in econometrics (and in the context
of OLS specifically) doesn’t imply that all variables used in
the analysis are expected to be normally distributed. Instead,
the assumption focuses on the distribution of the error term, ε.
(That little error term is of critical importance in
econometrics. As Chapter 6 explains, you need several
assumptions about it to prove that the OLS estimators are
unbiased and efficient, per the Gauss-Markov theorem.)

The normality assumption in econometrics states
that, for any given X value, the error term follows a normal
distribution with a zero mean and constant variance. This
assumption is written in mathematical notation as

Two of the classical linear regression model (CLRM)
assumptions (covered in Chapter 6) are that the conditional
mean of the error is zero and that the error term has a constant
variance (homoskedasticity). Those assumptions are also
included in the normality assumption.

Another important characteristic of the normality
assumption is that it isn’t required for performing OLS
estimation. It’s necessary only when you want to produce
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confidence intervals and/or perform hypothesis tests with
your OLS estimates.

In Figure 7-1, you can see a graphical depiction of the
normality assumption.

Figure 7-1: The normality assumption of OLS.

The error term contains the influence of many
different forces (random variables) that affect your dependent
variable (Y) and aren’t captured by your independent
variables (Xs). The central limit theorem indicates that the
sum or mean of random variables is normally distributed as
long as many random variables are present and the influence
of any one random variable is small (check out Chapter 3 if
you need to review the central limit theorem and its
implications).
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In some applications, the assumption of a normal
distribution for the error term may be difficult to justify.
These situations typically involve a dependent variable (Y)
that has limited or highly skewed values. A limited dependent
variable is one whose potential values are restricted, which
can result from natural limits or artificial constraints on the
variable. For example, the number of times an individual
votes in a six-year period takes on a limited number of integer
values and is zero for a large fraction of individuals.
Variables like wages and prices tend to be highly skewed or
may also have limited values with minimum wages, floors,
ceilings, and so on. In some cases, you can use log values to
obtain a distribution that’s approximately normal.
Econometricians have also shown that with large sample
sizes, normality is not a major issue because the OLS
estimators are approximately normal even if the errors are not
normal.

In the following sections, you find out how the normality of
the error term is passed on to the OLS estimators.
Additionally, I show you how the assumption of a normal
distribution for the error term subsequently allows you to
produce statistics that use other popular probability
distributions.

The error term and the sampling distribution of OLS
coefficients
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In a simple regression model (with one independent or X
variable), you calculate the OLS coefficients using these
formulas:

and

In Chapter 6, I illustrate the following derivation:

which shows that the estimated slope term is a linear function
of the error term (ε). Because the intercept term is a linear
function of the slope term, it also follows that the intercept
term is a linear function of the error term. Therefore, all OLS
coefficients are a linear function of the error term. The error
term is assumed to be normally distributed, which implies that
the estimates of your terms also follow a normal
distribution. This last point is derived from a property of
normally distributed random variables that you may have
discussed in your statistics class; that is, a linear combination
of a normally distributed random variable results in another
normally distributed random variable.
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A linear function of a normally distributed random
variable is itself normally distributed. If you assume that the
error term is normally distributed ( ), then that
implies that the OLS estimators are normally distributed (

).

In Figure 7-2, I illustrate a normally distributed OLS
estimator.

Figure 7-2: Distribution of OLS estimator when the error
term follows a normal distribution.

Every sample that’s randomly drawn from some population is
likely to yield different values for your OLS coefficients (
terms). If you assume that the error term has a normal
distribution, you’re also assuming that the sampling
distribution of the coefficients looks like Figure 7-2.
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I use a model with one independent variable
(univariate) to keep the algebra manageable, but with matrix
algebra I can extend the model in Figure 7-2 to show many
independent variables (multivariate).

Revisiting the standard normal distribution

Any normally distributed random variable can be converted to
a standard normal. When you convert a normal random
variable with mean (μ) and variance (σ2) to a standard normal,
those parameters are shifted so that the mean is 0 and the
variance is 1.

The generic formula to convert a normally distributed random
variable (RV) to a standard normal (Z) is

where RV is any normally distributed random variable, E(RV)
is the expected value or mean of the random variable, and
SD(RV) is the standard deviation of the random variable.

The distribution of your OLS coefficients ( s) is

normal; in mathematical notation .
Consequently, the standard normal distribution for OLS
estimators can be defined as
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where the standard deviation of the estimator ( ) is a
function of the variation in the X values and the variance of
the error term ( ). I provide more details about the variance
of the error in Chapter 6.

In order to apply the standard normal distribution to
OLS estimators, you need to know the true value of the error
term’s variance. In an econometrics class, this value may be
provided. In practice, the true variance of the error isn’t
known, which means you need to estimate it. I explain the
procedure for performing this calculation in the next section.

Deriving a chi-squared distribution from the random error

The OLS coefficients (the terms) have a sampling
distribution because randomly drawn samples from a
population of interest yield different values for the dependent
variable (Y). These different values change your estimated
intercept and slope coefficients from sample to sample.

The assumption that the error term is normally distributed
also implies that the sampling distributions of your s are also
normally distributed. However, in order to work with any
normally distributed random variable, you must know its
mean and variance. For the OLS coefficients, this information

is usually written as .
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The variance of an estimator provides a measure of how much
the estimator is likely to change from one sample to another.
For the OLS estimators in a model with one independent
variable, the variances are

In practice, the true variance of the error ( ) isn’t
known, but you can estimate it by calculating the variance of
the regression or mean square error (MSE). Here’s the
formula:

The number of independent variables are represented by p,
and n – p – 1 is known as the residual degrees of freedom.

The square root of this value is known as the standard error
of the regression, or root mean square error (RMSE):
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As you would when calculating the sample variance
of any random variable, you must divide by the degrees of
freedom. The degrees of freedom represent the number of
independent values used when producing the variance
estimate; in other words, it’s the number of observations
minus the number of estimates that must be produced before
the sample variance is calculated. In the case of a residual
variance, you first need to estimate the regression function
before you can calculate each residual. That means you lose
degrees of freedom p plus the intercept (or constant).

If you replace the known error variance ( ) in the
calculation of and with the estimated (or residual)
variance ( ), you get the estimated variances of the OLS
coefficients

and
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The square root of these estimated variances ( )
provides the standard errors of the coefficients.

In Table 7-1, data for the dependent variable (Y) and the
independent variable (X) are in the first two columns. With
these values and the OLS technique, you can obtain the
sample regression function . (If you need to
review these calculations, I calculate the OLS coefficients
using the same data in Chapter 5.)

Beginning with Column 4 of Table 7-1, proceed with the
intermediate steps to calculate the standard errors of the
coefficients. Using the work in the table, you can obtain the
MSE:
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The numerator is derived using the values in Table 7-1, and
the denominator is calculated by using the number of
observations (5) for n and the number of X variables (1) for p.
After you have the MSE, you can obtain the estimated
variances of the coefficients:

Then you find the standard errors of the coefficients:

Using the “regress” command in STATA, I can
quickly produce the OLS results, which you see in Figure 7-3.
STATA (and most econometrics software packages) includes
the coefficients, MSE, RMSE, and standard errors of the
coefficients.
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Figure 7-3: STATA OLS output includes the MSE, RMSE,
and coefficient standard errors.

The variance of the error ( ) is a parameter. In
other words, there’s some true, but unknown, value for this in
the population as a whole. The MSE, however, is an estimate
of the error variance. Like all estimators, you never know
exactly what value will be derived, because it varies from
sample to sample. The assumption that the error is normally
distributed implies that the MSE and the estimated variances
of the coefficients are the square of a normal, so they have a
chi-squared (χ2) distribution with n – p – 1 degrees of
freedom.

OLS standard errors and the t-distribution

When you assume that the error term is normally distributed,
that translates into a normal distribution of your OLS
estimators. You could express this as
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Consequently, each of your OLS estimators can be
transformed to a standard normal. In other words,

In practice, the standard deviation of the estimator
isn’t known, so you use its estimate (the standard error).
When you replace the standard deviation of the estimator ( )
with the standard error ( ), the appropriate probability
distribution becomes t instead of standard normal. This can be
written as

The reason has a t-distribution is because
the numerator is a normal distribution while the parameter
in the denominator is replaced by the estimator . This
estimator is derived from , so it has a square root of a
chi-squared distribution. The degrees of freedom (n – p – 1)
for this t-distribution come from the standard error estimate in
the denominator.
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Testing the Significance of Individual Regression
Coefficients

After you estimate a regression and have your OLS estimates,
you want to know what conclusions can be drawn from your
results. At the very start of the process, you selected the
variables in your model based on your knowledge of
economic theory along with a healthy dose of common sense,
and now that you’ve obtained results, what do they suggest
about your hypothesized relationships? What is the
probability that results like the ones you produced were the
result of chance? In order to address these questions, you
need to test the individual significance of your regression
coefficients.

A regression coefficient is statistically significant
(meaning the results didn’t happen just by chance) if you can
provide solid evidence that the true parameter value isn’t
zero. In order to provide strong evidence that the true
parameter value isn’t zero, you need to show that it’s highly
unlikely that the X variable associated with that coefficient
has no effect on your dependent (Y) variable.

The most common test of statistical significance for the OLS
coefficients is the following two-sided test: H0: βk = 0 and H1:
βk ≠ 0 where H0 represents the null hypothesis that the true
parameter value is zero and H1 is the alternative hypothesis.
Although this two-sided test (using zero as the hypothesized
value) is the most common hypothesis test for regression
coefficients, any value can be used (if you’re having trouble
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recalling these concepts from your statistics class, you can go
to Chapter 3 for an overview).

Sometimes you may be interested in performing a one-sided
test, such as

H0: βk ≤ 0 H1: βk > 0

or

H0: βk ≥ 0 H1: βk < 0

In economics, theory may rule out some numerical
possibilities and imply that the relationship (slope coefficient)
has a particular sign (positive or negative). For example,
income should always have some positive effect on
consumption. If you’re only interested in rejecting a null
hypothesis if the evidence goes in a particular direction, then
a one-sided test is appropriate.

You can’t determine the importance of a variable or
the magnitude of its effect by the statistical significance of the
coefficient. Some coefficients that are highly statistically
significant may be of little importance, so keep in mind that
statistical significance provides only evidence of a positive or
negative effect. For magnitude and importance, you want to
focus on the value of the coefficient and perhaps calculate the
standardized regression coefficient (see Chapter 5 for a
discussion of this).
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Interpreting the meaning of your coefficient
estimates helps you determine economic significance. Do the
coefficients represent unit changes? Percent changes? Are
some of the variables measures in hundreds or thousands?
Keep these things in mind, provide a verbal description of
your results, and make the connection to the economic theory
that motivated your estimation in order to drive home
economic significance.

In the following sections, I guide you through two approaches
that can be chosen for hypothesis testing and show you how
statistical significance is determined from your results.

Picking an approach

You can report the statistical significance of your coefficients
(the result of your hypothesis test) with either the confidence
interval approach or the test of significance approach. The
former provides you with a range of possible values for your
estimator in repeated sampling, and the latter gives you a test
statistic that’s used to determine the likelihood of your
hypothesis.

Confidence interval approach

A confidence interval provides a range (lower and upper
limit) of values that would contain the true value (parameter)
a certain percentage of time. If you need to review the
concept of a confidence interval, I discuss the details in
Chapter 3.
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The confidence interval for a regression coefficient
is given by

where 1 – α is the level of confidence, is the estimated
coefficient, is the standard error of the coefficient, and

is the appropriate t value. You can find the t value by
using the t-distribution table in the Appendix and choosing n
– p – 1 as your degrees of freedom (if your recollection of the
t-distribution is foggy, you can visit Chapter 3).

Suppose your estimated slope coefficient is –19.3, its standard
error is 0.6807, and the degrees of freedom are 3. With this
information you can calculate a 95 percent confidence
interval as follows:

f(–19.3 – (3.182)(0.6807) ≤ β1 ≤ –19.3 + (3.182)(0.6807)) = 1
– 0.05

where the value 3.182 is pulled from the t table in the
Appendix by going to the row with 3 degrees of freedom (n –
p – 1 = 5 – 1 – 1 = 3) and 0.025 tail density (α/2 = 0.05/2 =
0.025).

f(–21.47 ≤ β1 ≤ –17.13) = 0.95

Therefore, you can be confident that, in repeated samples,
your estimated coefficient will fall between –21.47 and
–17.13 95 percent of the time. The calculation of a 95 percent
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confidence interval is a conventional norm (and STATA
chooses it as the default), but other common confidence
intervals are 90 and 99 percent.

Similarly, a confidence interval can be calculated for the
intercept (β0) or any other coefficient (βk) using the same
formula. In your STATA output, as shown in Figure 7-3,
you’ll find the confidence intervals to the right of the
estimated coefficients, standard errors, and t-statistics.

If the hypothesized value is not contained in your
calculated confidence interval, then your coefficient is
statistically significant (meaning you can reject the null
hypothesis).

Test of significance approach

The test of significance is the most common approach
econometricians use to test hypotheses about coefficients. For
individual coefficients, a t-test is typically performed.

You can conduct a t-test for any of your coefficients
with the following steps:

1. Estimate the coefficient ( ) and standard error ( ).

221



2. Calculate the t-statistic with the formula ,
where is the hypothesized value of the coefficient
(usually zero).

3. Determine the level of significance at which you
want to perform the test and obtain the critical t value
from the t-distribution table.

Recall that a critical t-value is the reference value chosen
from the t-distribution (table) at the appropriate level of
significance and degrees of freedom (you can find the t table
in the Appendix).

4. Compare your t-statistic to your critical t and reject the
null hypothesis (or consider your coefficient statistically
significant) if you’re in the critical region.

See Chapter 3 if you need to review the concept of a critical
region.

As in the preceding section, suppose your estimated slope
coefficient is –19.3, its standard error is 0.6807, and the
degrees of freedom are 3. In order to perform a two-tailed test
of significance (which assumes that the true value of the
coefficient is zero) at the 5 percent level (meaning a 95
percent confidence level), you must calculate the t-statistic as
follows:
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Next, you want to compare the calculated t (–28.35) to the
critical t from the table (3.182). For a two-sided test, the
critical value is on both the left and right side of the
distribution, so the critical region is defined by values less
than –3.182 and greater than +3.182. Your t-statistic is in the
critical region, so the variable associated with that coefficient
is statistically significant at the 5 percent level.

One quick way of examining t-statistics in
regression output, such as that in Figure 7-3, is to see if their
absolute value is greater than 2. As a rule of thumb,
t-statistics with an absolute value greater than 2 indicate that
the variable is statistically significant.

Choosing the level of significance and p-values

The 10, 5, and 1 percent levels of significance are the most
common for testing the statistical significance of individual
regression coefficients. However, any level of significance
chosen for a confidence interval or test of significance
exposes you to type I and type II errors.

A type I error is rejecting a hypothesis that’s true, and a type
II error is failing to reject a hypothesis that’s false. If you
choose a higher level of significance, you increase the
chances of committing a type I error. And if you choose a
lower level of significance, you increase the chances of
committing a type II error.
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Researchers may pass on the burden of committing
type I or type II errors to readers by doing one of two things:

Present regression results in a table with asterisks next
to the coefficients of each variable. Usually, one asterisk (*)
indicates that the coefficient is significant at the 10 percent
level, two asterisks (**) indicate significance at the 5 percent
level, and three asterisks (***) are used if it’s significant at
the 1 percent level.

Report the p-value associated with the calculated
t-statistic. The p-value is the lowest level of significance at
which the null hypothesis could be rejected and is probably
the most useful way of summarizing the strength (or
weakness) of a statistical significance test. Econometrics
software programs routinely report p-values for each
estimated coefficient.

Analyzing Variance to Determine Overall or Joint
Significance

Because so many independent variables (Xs) can
simultaneously affect your dependent variable (Y), fully
observing and accounting for all of them in a regression
model is impossible. Some cases may have many
unobservable characteristics, which leads to a relatively low
R-squared value. However, that doesn’t mean that what
you’ve explained is inconsequential or unimportant. You can
use tests of overall (or joint) significance to determine if the
variation in your Y variable explained by all (or some subset)
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of your variables is nontrivial. The following sections
illustrate how you use variance calculations to produce
F-statistics that allow you to perform hypothesis tests of
overall and joint significance.

Normality, variance, and the F distribution

One reason why you perform regression analysis is to help
you explain variation in some outcome of interest, and that
outcome is your dependent (Y) variable.

After you introduce some independent variables and estimate
a regression, you can identify other components of variance;
namely, those parts of the total variance in Y that can be
explained by variation in the Xs you added to the regression
model or that remain unexplained (this concept is discussed in
more detail in Chapter 5). The normality assumption also
ensures that these variances have a chi-squared distribution.
In other words, the explained and unexplained variations from
a regression model have a chi-squared distribution under the
assumption that the conditional distribution of Y is normal (

), which is equivalent to
assuming that the error term is normally distributed (

).

In order to see how changes to your model affect
explained variation, you want to compare the different
components of variance. You can do so by calculating the
ratio of the variances and, as a result, generating an
F-distribution that allows you to draw some conclusions
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about the likelihood that your model has a significant impact
on the components of variance.

The reported F-statistic from OLS

The R-squared value is a measure of overall fit for a
regression model, but it doesn’t tell you whether the amount
of explained variation is statistically significant (in Chapter 5,
I discuss how you calculate and interpret the R-squared). This
situation is similar to individual regression coefficients,
because you don’t know by simply looking at the value of a
regression coefficient whether it’s statistically significant.

Despite a low R-squared value, your model may
explain a significant amount of variation in your dependent
variable. The opposite may also be true; a high R-squared
value may not be statistically significantly different from
zero.

The null and alternative hypotheses to test for a regression
model’s overall significance are

H0: β1 = β2 = . . . = βp = 0

H1: H0 is not true
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Overall significance only examines the impact of
the slope coefficients (not the intercept term) and is tested
using the following F-statistic:

In this equation, the explained sum of squares is

, and the residual sum of squares is

.

The number of sample observations is n, and p is the number
of independent variables in the regression model. The degrees
of freedom are p in the numerator and n – p – 1 in the
denominator.

With some algebraic manipulation, the F-statistic of overall
significance can also be written using the R-squared values as
follows:

227



I have a small dataset on demand (or sales) for a
good (qtydemX), the price of that good (priceX), and the price
of a related good (priceY). In Figure 7-4, I use the “list”
command in STATA to show you the values for the
individual observations. In addition, Figure 7-4 displays
STATA’s regression output which, by default, includes the
F-test for overall significance. In this example, the F-statistic
is 5.03 and the p-value is 0.055, so I can reject the hypothesis
that the independent variables have no collective influence on
the dependent variable at the 5.5 percent level of significance
(or with 94.5 percent confidence). Note: All econometrics
software packages, as part of the standard regression output,
display the sum of squares (explained, residual, and total), the
F-statistic, and the p-value associated with the test of overall
significance.
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Figure 7-4: The analysis of variance (ANOVA) section of
STATA’s regression output contains the measures needed for
the F-statistic.

In models with numerous independent variables,
many of the variables can be individually statistically
insignificant. Remember that individual significance doesn’t
rule out the possibility that they’re collectively significant.
Some variables, in combination with others, can have a strong
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collective influence even though their individual impact is
small.

Slope coefficients and the relationship between t and F

If the degrees of freedom in the numerator of an F-value
equal 1, then the square of a t-distribution approximately
equals an F-distribution. In the context of regression analysis,
this implies if p = 1.

In a simple regression model (with one independent
variable), the t-test of significance for the slope coefficient is
the same as the F-test for overall significance.

If you have one independent variable, the null hypothesis for
the test of individual significance (t-test) is H0: β1 = 0. But
this is also the test of overall significance (F-test) because the
entire model’s influence on your dependent variable rests on
the influence of one variable.

Figure 7-5 shows STATA output for a simple
regression model where the demand (or sales) for a good is
the dependent variable (qtydemX) and the price of that good is
the independent variable (priceX).
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Figure 7-5: In a simple regression model, the p-value for
overall significance is identical to the p-value for the slope
coefficient.

The t-test for the slope coefficient and the F-test shown in
Figure 7-5 produce the same result. Both have a p-value of
0.055. In models with only one independent variable, the
t-test and F-test always produce the same p-value.

Joint significance for subsets of variables

In addition to testing for overall significance, the F-test can
be useful in other situations. The most common is to examine
the joint significance of a subset of variables in a regression
model that includes several independent variables.

Testing the joint significance of a subset of
variables in a regression model is accomplished by
generalizing the F-test of overall significance to
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where RSSr is the RSS for the restricted model (the model
with fewer independent variables), RSSur is the RSS for the
unrestricted model (the model with more independent
variables), n is the number of sample measurements, p is the
number of independent variables in the unrestricted model,
and q is the number of independent variables contained in
your unrestricted model that are not contained in your
restricted model.

The F-test of overall significance is a special case of the more
general test. In that case, q = p because the restricted model
contains no independent variables in a test of overall
significance.

Suppose you’re interested in explaining variation in
movie box office revenue. You develop a model using the
movie’s budget, critic reviews, and MPAA rating as
independent variables. You use the MPAA ratings to generate
three dummy variables indicating whether the movie received
a PG, PG-13, or R rating (see Chapter 9 for an in-depth
discussion of dummy variables). The model can be estimated
without the ratings dummies (restricted) and with the ratings
variables (unrestricted). Figure 7-6 shows the results
produced from estimating both the restricted and unrestricted
models using STATA.
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You can use the results in Figure 7-6 to test the statistical
significance of MPAA ratings in affecting movie revenue.
The t-statistics suggest that none of the ratings have an
individually significant impact on revenue. But do they have
an impact collectively? To answer this question, calculate the
following F-statistic:

The critical value on the F-distribution is F.05,3,574 = 2.62, so
you don’t have enough evidence to claim that MPAA ratings
are collectively significant at the 5 percent level.
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Figure 7-6: STATA estimates of a restricted and unrestricted
model of movie revenue.

In STATA, you can test the significance of subsets
of your independent variables in fewer steps. Specifically,
you can estimate your unrestricted model and then use the
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“test var1 var2…” command to perform the F-test. Doing so
with my sample of movies has the results in Figure 7-7.

The benefits of using STATA for this calculation are
enhanced accuracy, faster calculations, and a reported p-value
for the test. The result in Figure 7-7 suggests that you can
reject the hypothesis that MPAA ratings have no collective
impact on movie revenue at the 8 percent (0.0802) level of
significance.

Figure 7-7: STATA regression output followed by a joint test
of statistical significance for a subset of the independent
variables.

Applying Forecast Error to OLS Predictions
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After you apply the OLS technique to estimate your
regression function, the results can be used to make
predictions about the dependent variable. Your predictions
won’t be perfect, so when you’re using regression for
forecasting, you need to provide some measure of accuracy.
In the subsequent sections, you apply regression results to
make predictions, figure out how much variability your
predictions will have, and use estimated prediction error to
produce forecast confidence intervals.

Mean prediction and forecast error

The population regression function (PRF) passes through the
conditional means of the dependent variable (Y). For a simple
regression model, the conditional mean for a specific value of
the independent variable (X0) is

E(Y|X0) = β0 + β1X0

In practice, you estimate the conditional mean for a
specific X value using your sample regression function (SRF)

by plugging in any potential value of your
independent variable for X0. The resulting is known as the
mean prediction.

If you apply the expected value operator to both
sides of the SRF, you get
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With the classical linear regression model (CLRM)
assumptions, the estimated regression coefficients are
unbiased (see Chapter 6 for a description and proof of this

result). If the coefficients are unbiased, then

and .

The predicted value of the dependent variable from
your SRF ( ) is an unbiased estimator of the true conditional
mean (E(Y|X)), but this estimation only proves that the two
are equal on average. Any particular prediction you produce
from a SRF is likely to contain forecast error (the difference
between the true conditional mean and the predicted value)
even though, on average, the forecast error is zero.

Variance of mean prediction

The variance of an estimate (or prediction) provides a
numerical value that describes how much a prediction
changes from one sample to another.

Given that your mean prediction from a SRF
contains forecast error, you want to know how much
variability your prediction contains. The less variability, the
more reliable your forecast.
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In applied situations, you’re likely to get only one sample (or
opportunity) to make a prediction. A smaller variance for
your prediction increases the chances that your forecast is
close to the true value and decreases the chances of having a
large forecast error.

In order to derive the variance of the mean prediction, begin
with the SRF at a specific X value and apply the variance
operator to get

Using the variance properties, you can rewrite the variance of
the mean prediction as

The covariance of the estimated regression coefficients is

If you substitute this and the components of and

into the variance equation, you have
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Note: See the earlier section “Deriving a chi-squared
distribution from the random error” if you don’t know how to
calculate the variance of the coefficients.

After several algebraic steps, you can reduce this equation to

where represents the variance of the error term.

In practice, you don’t know the true variance of the
error, so you can calculate the estimated variance of the mean
prediction using

where is the variance of the residuals or estimated variance
of the error (see the earlier section “Deriving a chi-squared
distribution from the random error” if you need help
calculating the variance of the residuals).
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The variance of your prediction is smallest near the
mean value of your independent variable(s). If you make
predictions using values for your independent variable(s) that
deviate from their mean, the variance of your prediction
increases exponentially.

All predictions are not the same: The prediction confidence
interval

If you’re able to calculate the variance of a parameter
prediction and you know the distribution of the parameter,
then you can construct a confidence interval.

For the mean prediction of a dependent variable in a
regression model, the confidence interval is defined as

, where is the standard error of the mean
prediction.

A unique characteristic of this confidence interval is the
changing standard error of the prediction; smallest at the
mean value of X and increasing exponentially as X deviates
from the mean.

The assumption that the error term follows a normal
distribution ensures that the OLS estimators ( terms) are also
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normally distributed (see the earlier section “Describing the
Role of the Normality Assumption” if you can’t recall how
this works). The mean prediction ( ) is a linear function of
the estimators, so it also has a normal distribution. The
t-distribution is used to construct the confidence interval
because you rely on the estimated variance of the error to
calculate the variance of the prediction rather than the true
variance of the error.

The nature of the confidence interval for the OLS
mean prediction is best illustrated with econometrics
software. In STATA, I use the pull-down menu in Graphics
and then click on Twoway graph. A small window opens in
which I choose Create followed by Linear prediction w/CI.
Figure 7-8 shows the resulting graph. It contains all the mean
predictions (the regression line) and the confidence interval
(the shaded area).
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Figure 7-8: The graphing tools in STATA can be used to
show the OLS prediction and confidence interval.

Notice that the area of the confidence interval for your
prediction is smallest at the average X value and increases
exponentially as you move away from the mean in either
direction.
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Part III

Working with the Classical Regression Model

Refresh your grasp on the flexibility of the
classical linear regression model by checking out the
breakdown I provide at www.dummies.com/extras/
econometrics.

In this part . . .
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Model nonlinear relationships and estimate functions
with traditional techniques.

Examine specification issues, determine the best
approach for dealing with them when they occur, and
strengthen faith in your results.

Discover how to turn qualitative data into quantitative
data that you can use as independent (or explanatory)
variables.

Estimate the impact of qualitative characteristics on
quantitative outcomes.
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Chapter 8

Functional Form, Specification, and Structural Stability

In This Chapter

Understanding how to use and interpret nonlinear
regression functions

Transforming common nonlinear functions in economics
into linear functions

Testing for specification issues and checking the reliability
of your results

You typically choose the dependent variable in a particular
analysis based on the economic question or puzzle that you’re
interested in exploring and your prior knowledge of economic
theory. However, you have to think about several additional
questions to determine whether you have a good econometric
model. In particular, you need to ask:

What independent variables or factors are likely to affect
my outcome or variable of interest (dependent variable)?

Do I expect the variables to have a linear (that is, constant
or straight-line) impact on the dependent variable, or are some
of them likely to have a nonlinear effect?

Your answers to these questions address what
econometricians call specification issues. The best ways to
deal with specification issues for an individual problem can
be controversial and far from obvious, but you aren’t without
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help. In this chapter, I show you some strategies that help you
address these questions carefully and, consequently, make
your results more convincing. I also expose you to various
paths and criteria that can be considered in approaching these
questions systematically and formulating your econometric
model.

Employing Alternative Functions

Because economic relationships are rarely linear, you may
want to allow your econometric model to have some
flexibility. Linear functions are the easiest to interpret, but
they also impose restrictions on the nature of the relationship
between your dependent (Y) and independent (X) variables
insofar as they force the effect of the X variable(s) on the Y
variable to be constant over all values of X. One way you can
allow for more flexibility in the effect of the independent
variable(s) is by specifying your econometric model using
polynomials; that is, as a nonlinear function. In this section, I
show you different ways that you can use polynomials.

Quadratic function: Best for finding minimums and
maximums

With a quadratic function, you allow the effect of the
independent variable (X) on the dependent variable to change.
As the value of X increases, the impact of the dependent
variable increases or decreases.
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The mathematical representation of an econometric
model with a quadratic function is .

If you estimate this type of regression, several outcomes are
possible for your coefficients. However, the two most
common results are as follows:

and

and

If and in the estimated regression
are both positive, then your estimated regression line looks
like the one shown in

Figure 8-1a. If is positive and is negative in the
estimated regression

, then Figure 8-1b is an approximate
depiction of the regression curve.

A total variable cost (TVC) or total cost (TC) curve
may display the shape shown in Figure 8-1a, whereas a
short-run total product (TP) curve is likely to display the sort
of behavior shown in Figure 8-1b if marginal product is
diminishing at any level of input. (These concepts were
covered in your microeconomics course. Check out
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Economics For Dummies, by Sean Masaki Flynn [Wiley], if
you need a refresher.)

Figure 8-1: A quadratic function with an increasing slope (a)
and with a decreasing slope (b).

Cubic functions: Good for inflexion

Like when using a quadratic function, with a cubic function,
you allow the effect of the independent variable (X) on the
dependent variable (Y) to change. As the value of X increases
(or decreases), the impact of the dependent variable may
increase or decrease. However, unlike a quadratic function,
this relationship changes at some unique value of X. In other
words, at some specific point, a decreasing effect becomes
increasing or an increasing effect becomes decreasing. The
point at which this occurs is called the inflexion point.

The mathematical representation of an econometric
model with a cubic function is . If
you estimate this type of regression, numerous outcomes are
possible for your coefficients. However, the two most
common results lead to either of the following curves:
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A decreasing slope followed by an increasing slope, as
shown in Figure 8-2a

An increasing slope followed by a decreasing slope, as
shown in Figure 8-2b

Figure 8-2: A cubic function with a decreasing and then
increasing slope (a) and with an increasing and then
decreasing slope (b).

Among many other possibilities, Figure 8-2a
depicts the potential shape of a total variable cost (TVC) or
total cost (TC) curve. Figure 8-2b approximates a short-run
total product (TP) curve if initially marginal productivity is
increasing and then it diminishes.

Inverse function: Limiting the value of the dependent variable

If you believe that the outcome (dependent variable) you’re
modeling is likely to approach some value asymptotically (as
X approaches zero or infinity), then an inverse function may
be the way to go. Inverse functions can be useful if you’re
trying to estimate a Phillips curve (the inverse relationship
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between inflation and unemployment rates) or a demand
function (the inverse relationship between price and quantity
demanded), among other economic phenomena where the
variables are related inversely.

Here is the mathematical representation of an

inverse function econometric model:

If you estimate this type of regression, you’re likely to see
one of the following three outcomes (which I also show you
in Figure 8-3):

and . The graph in Figure 8-3a shows an
inverse function with Y approaching positive infinity as X
approaches zero and Y approaching as X approaches
infinity.

and . The graph in Figure 8-3b depicts an
inverse function with Y approaching positive infinity as X

approaches zero and Y approaching some negative value
as X approaches infinity.

and . The graph in Figure 8-3c shows an

inverse function with Y approaching some positive value
as X approaches positive infinity and Y approaching negative
infinity as X approaches zero.
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Figure 8-3: Three graphical representations of inverse
functions.

Giving Linearity to Nonlinear Models

In some cases, the models you’re working with aren’t linear
in parameters. Examples include Cobb-Douglas production
functions and constant-elasticity demand curves that you
worked with in your microeconomics class. In other cases,
you may be working with models in which the variables used
in the analysis cause the normality assumption of OLS to fail
(I cover this assumption in Chapter 7). This failure typically
occurs when the variables are measured in dollars or some
other large scale (like population figures). For both of these
cases, log transformations may come to the rescue. I break
down the different options available in the following sections.

Working both sides to keep elasticity constant: The log-log
model

Using natural logs for variables on both sides of your
econometric specification is called a log-log model. This
model is handy when the relationship is nonlinear in
parameters, because the log transformation generates the
desired linearity in parameters (you may recall that linearity
in parameters is one of the OLS assumptions; if not, flip to
Chapter 6).
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In principle, any log transformation (natural or not) can be
used to transform a model that’s nonlinear in parameters into
a linear one. All log transformations generate similar results,
but the convention in applied econometric work is to use the
natural log. The practical advantage of the natural log is that
the interpretation of the regression coefficients is
straightforward (a topic that I discuss later in this section).

Consider the demand function Q = αPβ where Q is the
quantity demanded, α is a shifting parameter, P is the price of
the good, and the parameter β is less than zero for a
downward-sloping demand curve. If β= –1, you can
recognize the function as a specific type of demand curve
with elasticity equal to –1 at all points; that is, you have a
unitary elastic demand curve.

A demand curve of the form Q = αPβ has a constant elasticity
(equal to –β), but the value of that elasticity may not be
known. Using data, you can estimate the parameters (α and
β), but you must transform the function in order to make
estimates using the OLS technique.

If your model is not linear in parameters, sometimes
a log transformation achieves linearity.

A generic form of a constant elasticity model can be
represented by
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If you take the natural log of both sides, you end up with

ln Yi = ln(α) + βln Xi

You treat ln(α) as the intercept. You end up with the
following model:

ln Yi = β0 + β1ln Xi

You can estimate this model with OLS by simply using
natural log values for the variables instead of their original
scale.

After estimating a log-log model, such as the one in
this example, the coefficients can be used to determine the
impact of your independent variables (X) on your dependent
variable (Y). The coefficients in a log-log model represent the
elasticity of your Y variable with respect to your X variable. In
other words, the coefficient is the estimated percent change in
your dependent variable for a percent change in your
independent variable.

Using calculus with a simple log-log model, you
can show how the coefficients should be interpreted. Begin
with the model ln Y = β0 + β1ln X and differentiate it to obtain

. The term on the right-hand side ( ) is the
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percent change in X, and the term on the left-hand side ( ) is
the percent change in Y, so β1 measures the elasticity.

Suppose you obtain the estimates , where
Y is sales and X is price. The elasticity is –0.85, so a 1 percent
increase in the price is associated with a 0.85 percent decrease
in quantity demanded (sales), on average.

If you estimate a log-log regression, a few outcomes for the
coefficient on X (β1) produce the most likely relationships:

: Figure 8-4a shows this log-log function in which
the impact of the independent variable is positive and
becomes larger as its value increases.

: Figure 8-4b shows a log-log function in which
the impact of the independent variable is positive but
becomes smaller as its value increases.

: Figure 8-4c shows a log-log function where the
impact of the dependent variable is negative.

Figure 8-4: Three depictions of a log-log function.
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Although regression coefficients are sometimes
referred to as partial-slope coefficients, in a log-log model the
coefficients don’t represent the slope (or unit change in your
Y variable for a unit change in your X variable).

Making investments and calculating rates of return: The
log-linear model

If you use natural log values for your dependent variable (Y)
and keep your independent variables (X) in their original
scale, the econometric specification is called a log-linear
model. These models are typically used when you think the
variables may have an exponential growth relationship, For
example, if I put some cash in a saving account, I expect to
see the effect of compounding interest with an exponential
growth of my money! The original model in these types of
scenarios isn’t linear in parameters, but a log transformation
generates the desired linearity (see Chapter 6 for more on this
standard OLS assumption).

Consider the following model of value in a savings fund that
depends on your initial investment, your return, and the
length of time in which the funds are invested: Yt = Y0(1 + r)t,
where Yt represents the value of the fund at time t, Y0 is the
initial investment in the savings fund, and r is the growth rate.

Labor economists are also interested in similar
functions because individuals usually have some initial
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earning power that can be supplemented with investments in
skill acquisition. These human capital functions deal with the
amount of money an individual can expect to earn depending
on his or her initial abilities and investments in education,
training, experience, and so on.

A generic exponential growth function can be
written as Y = Y0(1 + r)X, where the value of Y for a given X
can be derived only if the growth rate (r) is known. The
growth rate can be estimated, but a log transformation must
be used to estimate using OLS.

If you begin with an exponential growth model and take the
log of both sides, you end up with ln Y = ln Y0 + Xln (1 + r),
where ln Y0 is the unknown constant and ln (1 + r) is the
unknown growth rate plus 1 (in natural log form). You end up
with the following model:

ln Y = β0 + β1X

You can estimate this model with OLS by simply using
natural log values for the dependent variable (Y) and the
original scale for the independent variables (X). It’s known as
a log-linear model.

After estimating a log-linear model, the coefficients
can be used to determine the impact of your independent
variables (X) on your dependent variable (Y). The coefficients
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in a log-linear model represent the estimated percent change
in your dependent variable for a unit change in your
independent variable. The coefficient β1 provides the
instantaneous rate of growth.

Using calculus with a simple log-linear model, you
can show how the coefficients should be interpreted. Begin
with the model ln Y = β0 + β1X and differentiate it to obtain

. The term on the right-hand-side (δX) is the

unit-change in X, and the term on the left-hand-side ( ) is
the percent change in Y, so β1 provides the instantaneous rate
of growth for Y associated with a unit change in X.

The compounded growth rate is considered to be a
more accurate estimate of the impact of X. After estimating a
log-linear model, you can calculate the compounded growth
rate (r) as .

Suppose you obtain the estimated regression
, where Y is an individual’s wage and X is

her years of education. The 0.08 value for β1 indicates that the
instantaneous return for an additional year of education is 8
percent and the compounded return is 8.3 percent (e0.08 – 1 =
0.083).
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If you estimate a log-linear regression, a couple outcomes for
the coefficient on X (β1) produce the most likely relationships:

β1 > 0: This log-linear function illustrates a positive
impact from the independent variable, as shown in Figure
8-5a.

β1 < 0: This log-linear function depicts a negative impact
from the independent variable, as shown in Figure 8-5b.

Figure 8-5: Two depictions of a log-linear function.

Regression coefficients in a log-linear model don’t
represent the slope.

Decreasing the change of the dependent variable: The
linear-log model

If you use natural log values for your independent variables
(X) and keep your dependent variable (Y) in its original scale,
the econometric specification is called a linear-log model
(basically the mirror image of the log-linear model discussed
earlier in this chapter). These models are typically used when
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the impact of your independent variable on your dependent
variable decreases as the value of your independent variable
increases. The behavior of the function is similar to a
quadratic, but it’s different in that it never reaches a
maximum or minimum Y value.

The original model is not linear in parameters, but a log
transformation generates the desired linearity. (Recall that
linearity in parameters is one of the OLS assumptions, which
I discuss in Chapter 6.)

Consider the following model of consumption spending,
which depends on some autonomous consumption and
income:

Y = β0 + β1ln X

where Y represents consumption spending, β0 is autonomous
consumption (consumption that doesn’t depend on income), X
is income, and β1 is the estimated effect of income on
consumption.

I suspect that you’re familiar with the relationship between
income and consumption. In your principles of economics
courses, you probably referred to it as an Engel curve. You
may not have seen the mathematical function behind it, but
you’ve seen the graphical depiction.

The estimation of consumption functions isn’t the
only use of linear-log functions. Economists tend to use these
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functions anytime that the unit changes in the dependent
variable are likely to be less than the unit changes in the
independent variables.

If you begin with a function of the form , where the
value of Y for a given X can be derived only if the impact (β1)
is known, then you can estimate the impact using OLS only if
you use a log transformation. If you take the natural log of
both sides, you end up with Y = β0 + β1ln X where β0 is the
unknown constant and β1 is the unknown impact of X. You
can estimate this with OLS by simply using natural log values
for the independent variable (X) and the original scale for the
dependent variable (Y).

After estimating a linear-log model, the coefficients
can be used to determine the impact of your independent
variables (X) on your dependent variable (Y). The coefficients
in a linear-log model represent the estimated unit change in
your dependent variable for a percentage change in your
independent variable.

Using calculus with a simple linear-log model, you
can see how the coefficients should be interpreted. Begin with
the model Y = β0 + β1ln X and differentiate it to obtain

. The term on the right-hand-side ( ) is the
percent change in X, and the term on the left-hand-side (δY) is
the unit change in Y.
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In economics, many situations are characterized by
diminishing marginal returns. The linear-log model usually
works well in situations where the effect of X on Y always
retains the same sign (positive or negative) but its impact
decreases.

Suppose, using a random sample of schools districts, you
obtain the following regression estimates:

where Y is the average math SAT score and X is the
expenditure per student. The estimated coefficient
implies that a 1 percent increase in expenditure per student
increases the average math SAT score by 0.65 points.

If you estimate a linear-log regression, a couple outcomes for
the coefficient on X (β1) produce the most likely relationships:

β1 > 0: Figure 8-6a shows a linear-log function where the
impact of the independent variable is positive.

β1 < 0: Figure 8-6b shows a linear-log function where the
impact of the independent variable is negative.
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Figure 8-6: Possible depictions of a linear-log function.

As with log-log and log-linear models, the
regression coefficients in linear-log models don’t represent
slope.

Checking for Misspecification

The art of econometrics lies in finding the appropriate
specification or functional form to model your particular
outcome of interest. The choices made regarding functional
form and the selection of independent variables should be
based on economic theory and common sense. However, in
many cases, the theory can be vague about the specific
elements of a model’s specification.

Given the uncertainty that you face when settling on the
model and determining the results you’ll present in applied
econometrics, you have to consider the impact of excluding
variables, using inappropriate variables, or choosing the
wrong functional form.

Too many or too few: Selecting independent variables

One of the most important decisions you make when
specifying your econometric model is which variables to
include as independent variables. In the following sections,
you find out what problems can occur if you include too few
or too many independent variables in your model, and you see
how this misspecification affects your results.
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Omitting relevant variables

If a variable that belongs in the model is excluded from the
estimated regression function, the model is misspecified and
may cause bias in the estimated coefficients.

You have an omitted variable bias if an excluded
variable has some effect (positive or negative) on your
dependent variable and it’s correlated with at least one of
your independent variables.

The mathematical nature of specification bias can be
expressed using a simple model. Suppose the true population
model is given by

Yi = β0 + β1Xi1 + β2Xi2 + εi

where X1 and X2 are the two variables that affect Y. But due to
ignorance or lack of data, instead you estimate this regression:

which omits X2 from the independent variables. The expected
value of in this situation is

But this equation violates the Gauss-Markov theorem because
(I discuss the components of the Gauss-Markov
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theorem in Chapter 6). The magnitude of the bias can be
expressed as

where β2 if the effect of X2 on Y and δ1 is the slope from this
regression:

which captures the correlation (positive or negative) between
the included and excluded variable(s).

I summarize the direction of omitted variable bias in Table
8-1.

Table 8-1 Summary of Omitted Variable Bias

Correlation between
Included and Omitted
Variable:

Impact of Omitted
Variable on Dependent
Variable

Positive Negative

Positive Positive bias Negative bias

Negative Negative bias Positive bias
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In practice, you’re likely to have some omitted
variable bias because it’s impossible to control for everything
that affects your dependent variable. However, you can
increase your chances of minimizing omitted variable bias by
avoiding simple regression models (with one independent
variable) and including the variables that are likely to be the
most important theoretically (and possibly, but not necessarily
statistically) in explaining the dependent variable.

Including irrelevant variables

If a variable doesn’t belong in the model and is
included in the estimated regression function, the model is
overspecified. If you overspecify the regression model by
including an irrelevant variable, the estimated coefficients
remain unbiased. However, it has an undesirable effect of
increasing the standard errors of your coefficients.

In a simple regression model (with one independent variable),
the estimated standard error of the regression coefficient for X
is
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where is the estimated variance of the error and

is the total variation in X.

If you include additional independent variables in the model,
the estimated standard error for any given regression
coefficient is given by

where is the R-squared from the regression of Xk on the
other independent variables or Xs. Because , the
numerator decreases. An irrelevant variable doesn’t help
explain any of the variation in Y, so without an offsetting
decrease in , the standard error increases.

Just because your estimated coefficient isn’t
statistically significant doesn’t make it irrelevant. A
well-specified model usually includes some variables that are
statistically significant and some that aren’t. Additionally,
variables that aren’t statistically significant can contribute
enough explained variation to have no detrimental impact on
the standard errors.

Sensitivity isn’t a virtue: Examining misspecification with
results stability
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There’s no substitute for sound economic theory and good
common sense in specifying an econometric model. However,
the existence of contesting theories in economics often means
you can estimate a relationship in more than one way. The
following sections show you how to utilize some
conventional tests in econometrics to help you refine your
model’s specification.

Performing a RESET to test the severity of specification
issues

Although your econometric model isn’t likely to be perfectly
specified, that doesn’t imply that specification is a serious
issue with your model. A statistical test can be used to
examine the severity of certain specification issues.

Ramsey’s regression specification error test
(RESET) can be used to detect specification issues related to
omitted variables and certain functional forms. The test is
conducted by adding a quartic function of the fitted values of
your dependent variable ( , , and ) to your original
regression and then testing the joint significance of the
coefficients for the added variables.

The logic of using a quartic of your fitted values is
that they serve as proxies for variables that may have been
omitted. Because the proxies are essentially nonlinear
functions of your Xs, RESET is also testing misspecification
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from functional form. The function of your fitted values
doesn’t have to be limited to a quartic, but this structure has
proven useful and is the most common in practice.

You can perform a RESET in three steps:

1. Estimate the model you want to test for specification
error.

For example, you may decide to use .

2. Obtain the fitted values after estimating your model
and estimate.

3. Test the joint significance of the coefficients on the
fitted values of Yi terms, α, γ, and δ using an F-statistic.

See Chapter 7 for details on testing joint significance for a
subset of variables in a regression model.

Most econometrics software packages have
commands that conduct a RESET and save you time. For
example, in STATA, after estimating your original model,
you can type “estat ovtest” to perform the test.
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A RESET allows you to identify whether
misspecification is a serious problem with your model, but it
doesn’t allow you to determine the source. If your RESET
result doesn’t reject your specification, you can use it to
support your claim that specification isn’t a major problem
with your model. However, a RESET result that rejects the
specification of your model can’t be used to address any
particular specification problem.

Using the Chow test to determine structural stability

Sometimes specification issues arise because the parameters
of the model either aren’t stable or they change. For example,
the marginal propensity to save may change in response to a
new capital gains tax, or the returns to education could vary
by race and/or gender.

You can use a Chow test to check the structural stability of
your model. Here’s how to conduct a Chow test for structural
stability between any two groups (A and B) in just three
steps:

1. Estimate your model combining all data and obtain the
residual sum of squares (RSSr) with degrees of freedom n
– p – 1.

This is considered the restricted RSS because the model
restricts the parameters to be the same for the two groups.
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2. Estimate your model separately for each group and
obtain the residual sum of squares for group A, RSSur,A,
with degrees of freedom nA – p – 1 and the residual sum of
squares for group B, RSSur,B, with degrees of freedom nB
– p – 1.

These are considered the unrestricted RSS because the model
doesn’t restrict the parameters to be the same for the two
groups.

3. Compute the F-statistic by using this formula:

The null hypothesis for the Chow test is structural
stability. The larger the F-statistic, the more evidence you
have against structural stability and the more likely the
coefficients are to vary from group to group.

The result of the F-statistic for the Chow test assumes
homoskedasticity (see Chapter 6 for a discussion of
homoskedasticity). Assuming homoskedasticity holds, a large
F-statistic only informs you that the parameters vary between
the groups, but it doesn’t tell you which specific parameter(s)
is (are) the source(s) of the structural break.
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If structural stability is rejected in your Chow test,
then you must obtain coefficient estimates for different time
periods or different groups of cross-sectional units. If
structural stability isn’t rejected, one regression is appropriate
in estimating the relationship.

Conducting robustness/sensitivity analysis

One of the most common practices in applied econometrics is
the use of robustness analysis to check for specification
issues. Robustness refers to the sensitivity of the estimated
coefficients when you make changes to your model’s
specification.

Performing robustness/sensitivity analysis requires
that you determine which independent variables are of
primary interest (also known as core variables) for your
empirical investigation. Then you estimate numerous
regressions with your core variables, but experiment with
various combinations of other control variables. If the
coefficients of your core variables aren’t sensitive (maintain
the same sign with similar magnitudes and levels of
significance), then the coefficients are considered robust.
Note: Misspecification is considered to be less problematic
when your results are robust.

Some econometrics software programs have specific
commands that allow you to perform robustness analysis
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more quickly. For example, in STATA, you can download the
“rcheck” and/or “checkrob” programs to automatically
perform regressions with various combinations of your
independent variables. Note: Don’t confuse these robustness
checks with the “, robust” regression option in STATA. The
“, robust” option is useful, but it’s not designed to address
specification issues; instead, it helps you deal with
heteroskedasticity (something I discuss at length in Chapter
11).

Robustness analysis requires that you be cautious
about which non-core independent variables are considered
for exclusion/inclusion in the various regressions that will
examine sensitivity. Some variables, despite not being of
primary interest (that is, despite not being core), are likely to
be essential control variables that would be included in any
analysis of your outcome of interest (you should rely on
economic theory and your common sense here). Removing
those variables can result in more serious misspecification
and cause your core coefficients to appear sensitive.
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Chapter 9

Regression with Dummy Explanatory Variables

In This Chapter

Converting qualitative information into quantitative data

Estimating differences in means between two groups with
regression analysis

Performing regression analysis using qualitative and
quantitative data simultaneously

Testing for joint significance

Quantitative variables such as years of experience, costs, and
prices aren’t the only variables that can have a major
influence on the dependent variable in a regression model.
Qualitative variables — think gender, race, season of the year,
and geographical location — can too. In this chapter, I
explain how qualitative variables can be used as independent
(or explanatory) variables just as readily as quantitative
variables in traditional ordinary least squares (OLS)
regression. I also show you all the common ways in which
qualitative variables are used in econometric analysis and
help you figure out how to interpret the coefficient estimates.

Numbers Please! Quantifying Qualitative Information

Estimating an econometric model requires that all the
information be quantified. In other words, numbers must be
used to characterize both your quantitative and qualitative
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variables. Quantitative variables are typically coded with
numeric values in the raw data, but qualitative variables are
likely to require you to perform some quantification
manipulation. In this section you find out how to quantify
variables when working with two groups or with multiple
groups.

Defining a dummy variable when you have only two possible
characteristics

In many cases, the qualitative characteristics you want to
include in your econometric analysis have two groups (or
categories). In general, you have two groups when sample
observations have a “this” or “that” option. For example, in
most surveys, gender is classified as either male or female.

If a qualitative characteristic has two groups, you
need to create one dummy variable in order to quantitatively
capture that attribute. The dummy variable takes the value of
1 if one of the two characteristics is present and 0 if the other
characteristic is observed. The group that’s identified (or
assigned) 0 values for the created dummy variable is called
your reference or base group.

Table 9-1 illustrates how you can create a dummy variable
from your original data. Column 1 contains the movie title,
and Column 2 contains the lead actor’s name. Column 3 isn’t
part of the original data, but I create the variable Female
using the information in Column 2. The variable Female is a
dummy variable equal to 1 if the lead actor is female and
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equal to 0 if the lead actor is male. Notice that only one
dummy variable is needed to capture two possibilities (in this
case, male and female).

Source: www.imdb.com

Your econometric results aren’t affected by which
group you decide to assign a 1 and which group you assign a
0 in your dummy variable.

Juggling multiple characteristics with dummy variables

In some cases, the qualitative characteristics you want to
include in your econometric analysis have more than two
groups (or categories). In general, you work with several
groups when sample observations are classified into one of
many possibilities. For example, a firm may be located in the
West, Midwest, South, or Northeast region of the country.
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In order to quantitatively capture a qualitative
attribute with numerous groups (or possibilities), you need to
create dummy variables for each group minus 1. The dummy
variable takes the value of 1 if a particular characteristic is
present and 0 otherwise. In other words, if you have J groups,
you need J – 1 dummy variables with 1s and 0s to capture all
the qualitative information. The group that does not have a
dummy variable is identified when all the other dummy
values are 0, and it’s called your reference or base group.

To see what I mean, check out Table 9-2. With this data, you
can create the dummy variables you need from a qualitative
variable with several groups. Column 1 contains the movie
title, and Column 2 contains the MPAA rating (G, PG, PG13,
or R). Columns 3, 4, and 5 aren’t part of the original data, but
I create them using the information of MPAA rating in
Column 2. Notice that the number of dummy variables I need
is one less (three) than the number of possible outcomes for
the qualitative characteristic (in this case, four: G, PG, PG13,
and R).
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Source: www.imdb.com

The group you choose to assign a 0 all the way
across doesn’t affect your econometric results. Those
observations (in this example, G-rated movies like Herbie:
Fully Loaded) are important to include and do affect the
overall results, because they are all part of the reference
group. It doesn’t matter, however, which type of movie is
chosen to be the reference group.

Finding Average Differences by Using a Dummy Variable

You should recall from your statistics course how to conduct
the t-test to examine the differences in means between two
groups. (If not, I provide a refresher on this technique in
Chapter 3.) But what you may not know is that you can use
dummy variables and regression analysis to obtain the same
results as the t-test. The following sections clarify how.

Specification

Even though your econometric model is likely to include both
quantitative and qualitative characteristics, I begin with a
model that only uses a dummy variable to capture qualitative
characteristics and ignores other potential independent
variables. This process amounts to identifying differences in
means for groups identified by the dummy variable(s), but it’s
a useful building block to understanding more realistic
models that combine qualitative characteristics with
quantitative variables.

277

http://www.imdb.com
http://www.imdb.com


If the qualitative characteristic that you’d like to use
as an independent variable contains only two groups (as
discussed in the earlier section “Defining a dummy variable
when you have only two possible characteristics”), then an
econometric model with a single dummy variable as the only
explanatory variable can be expressed as

Yi = β0 + β1Di + εi

where Y is the dependent variable, β0 is the intercept (or
constant) term, and β1 is the impact of the characteristic
represented by the dummy variable (D). Di = 1 if the specific
qualitative characteristic is present and Di = 0 if not.

If the qualitative characteristic you’d like to use as
an independent variable has more than two groups (as in the
earlier section “Juggling multiple characteristics with dummy
variables”), then the econometric model must include J – 1
variables to fully capture the possibilities. Suppose you’d like
to use a variable with a qualitative characteristic containing
four possible outcomes {A, B, C, and D}. The basic
econometric model to capture a qualitative characteristic is
expressed as

Yi = β0 + β1DiB + β2DiC + β3DiD + εi

where DiB = 1 if the observation belongs to group B, DiC = 1
if the observation belongs to group C, DiD = 1 if the
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observation belongs to group D, and DiB = DiC = DiD = 0 if
the observation is in group A. By using this equation, you
implicitly assign group A as the reference or base group in
any two-group comparison.

Interpretation

One useful way of seeing the role of a dummy variable in an
econometric model is to interpret the results of a regression
using a dummy variable as the only independent variable.

An estimated regression with a dummy variable is generally
written as , where the terms represent the
estimated parameters. Because D can only be 0 or 1 for any
given observation, if Di = 0, and if Di = 1.

The predicted Y value ( ) from a regression
represents the estimate of the conditional mean ( ). A
dummy variable only has two values, so you get two
predicted Y values. Therefore, the predicted Y values are equal
to the sample means for each group.

To help illustrate the point, I’ve estimated a model
with a dummy variable by using STATA and data collected
from hundreds of movies. I used information on lead
characters to create a dummy variable Female that is equal to
1 if the lead actor is a female and 0 otherwise. Figure 9-1
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contains the STATA output from my regression using gross
box office revenue (measured in millions of dollars) as my
dependent variable and Female as my independent variable.
The results in Figure 9-1 imply that, on average, revenue for a
movie with a female lead is about $16 million less than a
movie with a male lead.

If I simply calculate the average revenue for movies
with a male lead and movies with a female lead, the
difference is perfectly consistent, as you can see in Figure
9-2. In this figure, you can see that the average revenue is
about $63 million overall (group “combined”). However, the
average revenue is $67.9 million for movies with male leads
(group 0) (the value of the intercept in Figure 9-1), whereas
the average revenue is $51.5 million for movies with female
leads (group 1). The difference in revenue between the two
groups is precisely the value of the coefficient for the dummy
variable in Figure 9-1. In addition, the reported t-statistic
(with a value of 2.44) is identical in Figures 9-1 and 9-2.
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Figure 9-1: STATA regression output with a dummy variable
as the only independent variable.

Figure 9-2: STATA output containing means for two groups
and t-test for differences in means.

You can also estimate a model with dummy
variables when the qualitative characteristic has more than
two groups. Consider the example shown in Figure 9-3,
which uses information on MPAA ratings (G, PG, PG13, and
R) to create dummy variables for three of the four groups.
Figure 9-3 contains the STATA output from my regression
using gross box-office revenue (measured in millions of
dollars) as my dependent variable and the dummy variables as
my independent variables. Figure 9-3 illustrates that, on
average, movies with PG, PG13, and R ratings earn less
revenue than G-rated movies. None of the coefficients,
however, are statistically significant (I cover statistical
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significance in Chapter 7). This implies that it’s possible for
the revenue of movies in the various rating categories to be
identical to the revenue of movies in the reference group
(G-rated movies).

Figure 9-3: STATA regression output using a qualitative
independent variable with more than two groups.

Combining Quantitative and Qualitative Data in the
Regression Model

Regression analysis allows you to simultaneously utilize
qualitative and quantitative information. You can use dummy
variables alone to estimate differences in means between
groups. But because many characteristics may vary between
groups, it’s usually important to use the power of regression
analysis so you can concurrently consider the impact of
quantitative characteristics. In the following sections, I
explain how to use both dummy variables (as qualitative
variables) and quantitative variables together in a single
regression model.
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Specification

A useful way to utilize qualitative characteristics in
econometrics is to combine them with quantitative variables
in a regression. If the qualitative characteristic that you’d like
to use as an independent variable contains only two groups,
then one dummy variable is used in the econometric model
along with any quantitative variables that should be included
in the model.

An econometric model with one dummy variable and one
quantitative variable can be expressed as

Yi = β0 + β1Di + β2Xi + εi

where Di = 1 if the specific qualitative characteristic is
present and Di = 0 otherwise, and X is the usual quantitative
variable used in Chapters 5 and 8.

If the qualitative characteristic you’d like to use as
an independent variable has more than two groups (say J
groups), then the econometric model must include J – 1
variables to fully capture the possibilities for the qualitative
characteristic plus the quantitative variables you’re including
as independent variables. An econometric model with a
qualitative characteristic containing four possible outcomes
(such as the four MPAA ratings used previously) and a
quantitative variable is expressed as
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Yi = β0 + β1DiB + β2DiC + β3DiD + β4Xi + εi

where DiB = 1 if the observation belongs to group B, DiC = 1
if the observation belongs to group C, DiD = 1 if the
observation belongs to group D, and DiB = DiC = DiD = 0 if
the observation is in group A. (X is the quantitative variable.)
Tada! You’ve just implicitly assigned group A as the
reference or base group in any two-group comparison.

Interpretation

An estimated regression with one quantitative and one
dummy variable is generally written as ,
where the s represent the estimated parameters, D can be 0
or 1 for any given observation, and X is any numeric value.
The predicted Y value is if Di = 0, and

if Di = 1.

The coefficient for your dummy variable(s) in a
regression containing a quantitative variable shifts the
regression function up (if the coefficient is positive) or down
(if the coefficient is negative). The same holds true when
there’s more than one dummy variable.

Figure 9-4 shows a graphical depiction of the resulting
regression when the model contains one dummy variable to
capture a qualitative characteristic and one quantitative
variable.
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Figure 9-4: A regression with one quantitative and one
qualitative variable.

You can use STATA to estimate a model with a
quantitative and dummy variable. Figure 9-5 contains the
STATA output from a regression using gross box-office
revenue (measured in millions of dollars) as the dependent
variable. The dummy variable Female (which equals 1 if the
lead actor is a female and 0 otherwise) and the quantitative
variable movie budget are the independent variables. The
results in Figure 9-5 suggest that, holding gender of lead actor
constant, every additional dollar in the movie’s budget is
associated with an additional $1.13 in revenue. Also, holding
movie budget constant, a female lead actor has no statistically
significant effect on movie revenue because the t-statistic for
the Female coefficient doesn’t meet conventionally accepted
standards of statistical significance with a p-value of 0.545.
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Figure 9-5: STATA regression output using one quantitative
and one dummy variable.

Interacting Quantitative and Qualitative Variables

Interacting qualitative or dummy variables with quantitative
variables provides enough flexibility to detect differences
between groups overall and differences that may vary
depending on the value of the quantitative variable(s). The
next sections show you what an interacted econometric model
looks like and demonstrate how to apply the model.

Specification

You can use dummy variables as standalone independent
variables, but you can also interact them with your
quantitative variables to allow for more flexibility in your
estimated regression function.
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The product of two independent variables is known
as an interaction term. If the qualitative characteristic that
you’d like to use as an independent variable contains only two
groups, then independent variables in your interacted model
can include one dummy variable, any quantitative variables
that should be included in the model, and the product of your
dummy variable with at least one quantitative variable.

An interacted econometric model can be expressed as

Yi = β0 + β1Di + β2Xi + β3(DX)i + εi

where Di = 1 if the specific qualitative characteristic is
present and Di = 0 otherwise, X is the quantitative variable,
and DX is the interaction term (product of the dummy and
quantitative variable for any given observation).

Interpretation

An estimated regression with independent variables that
include one dummy, one quantitative, and one interaction
variable is generally written as

where the s represent the estimated parameters, D can be 0
or 1 for any given observation, X can be any numeric value,
and DX is the product of D and X. The predicted Y value is
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if Di = 0, and if Di =
1.

The inclusion of an interaction term in your
econometric model allows the regression function to have a
different intercept and slope for each group identified by your
dummy variables. The coefficient for your dummy variable(s)
in a regression shifts the intercept, and the coefficient for your
interaction term changes the slope (which is the impact of
your quantitative variable).

When you estimate a model with a dummy variable, a
quantitative variable, and an interaction term with the dummy
and quantitative variables, you end up with one of four
possible outcomes:

One regression line: The dummy and interaction
coefficients are zero (meaning they’re not statistically
significant).

Two regression lines with different intercepts but the
same slope: The coefficient for the dummy variable is
significant, but the interaction coefficient is zero (or not
statistically significant).

Two regression lines with the same intercept but
different slopes: The dummy coefficient is zero (or not
statistically significant), but the interaction coefficient is
significant.
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Two regression lines with different intercepts and
slopes: The dummy coefficient and the interaction coefficient
are both significant.

Figure 9-6 shows a graphical depiction of the resulting
regression with an insignificant dummy coefficient but a
significant interaction coefficient. Note: The dummy
coefficient isn’t significantly different from zero.

Figure 9-6: A regression with an interacted quantitative and
dummy variable.

Figure 9-7 shows a graphical depiction of the resulting
regression with significant dummy and interaction
coefficients. In this graph, all coefficients differ significantly
from zero.
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Figure 9-7: A regression with an interacted quantitative and
dummy variable.

If you want to estimate a model with a dummy
variable, a quantitative variable, and an interacted variable,
try using STATA. Figure 9-8 contains the STATA output
from my regression using gross box office revenue (measured
in millions of dollars) as my dependent variable. One
independent variable is the dummy variable labeled Female
(which equals 1 if the lead actor is a female and 0 otherwise).
The other independent variable is the quantitative
measurement of the movie budget (labeled budget_mil). I
create a third variable that is the interaction of my dummy
and quantitative variables labeled budgetXFemale. The results
in Figure 9-8 suggest that every additional dollar in the
movie’s budget is associated with an additional $1.17 in
revenue if the lead actor is male and $0.84 (1.17 – 0.33 =
0.84) if the lead actor is female. Also, when movie budget is
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zero (or very low), a female lead actor is associated with
revenue that is $15.45 million higher, on average.

However, the interaction term estimates that as the movie
budget increases, the difference in revenue between movies
with female leads and those with

male leads declines. If a movie’s budget is more than $52

million ( ),

then the revenue will be greater, on average, with a male lead.
The average budget for movies in the sample is $47 million.
Therefore, low-budget movies tend to earn more revenue with
a female lead, and high-budget movies generally earn more
revenue with a male lead.

Figure 9-8: STATA output showing creation of interaction
term from original data and regression results using a
quantitative variable interacted with a dummy variable.
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Interacting Two (or More) Qualitative Characteristics

Interacting two qualitative or dummy variables with each
other allows you to detect differences between various
combinations of groups. With dummy variables in an
econometric model, you can estimate the impact of qualitative
characteristics independently, but interacting them provides
an opportunity to identify how the presence of multiple
characteristics simultaneously affects your dependent
variable. In the following sections, I show you how it’s done.

Specification

You can interact dummy variables with each other if you have
reason to believe that the simultaneous presence of two (or
more) characteristics has an additional influence on your
dependent variable.

If the qualitative characteristics that you want to use
as independent variables require two (or more) sets of dummy
variables, then independent variables in your interacted model
can include dummy variables, any quantitative variables that
should be included in the model, and the product of two
(or more) dummy variables.

An econometric model with interacted qualitative
characteristics can be expressed as

Yi = β0 + β1Xi + β2DiA + β3DiB + β4(DADB)i + εi
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where X is the quantitative variable, DA and DB represent the
specific qualitative characteristics, and DADB is the
interaction term (product of the two dummy variables for any
given observation).

As an example of a situation where the inclusion of an
interaction term would be valuable, suppose you’re interested
in modeling hourly wages to examine discrimination in the
labor market. For a sound theoretical model, you include
controls for gender and race. Both of these qualitative
characteristics would be included in my model as separate
dummy variables. However, gender and race could have a
combined effect (for example, being both female and
non-white) that either magnifies or dampens their individual
impact, so you need an interaction term.

Interpretation

An estimated regression with independent variables that
include a quantitative variable, at least two dummy variables,
and an interaction of dummy variables is generally written as

where the terms represent the estimated parameters, X can
be any numeric value, DiA and DiB can be 0 or 1 for any given
observation, and (DADB)i is the product of DiA and DiB.

The predicted Y value depends on X and four possible
combinations of the dummy variables:

if DiA = 0 and DiB = 0
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if DiA = 1 and DiB = 0

if DiA = 0 and DiB = 1

if DiA = 1 and DiB = 1.

The inclusion of interacted dummy variables in
your econometric model allows the regression function to
have different intercepts for each combination of qualitative
attributes. The coefficients for your dummy variables and
their interaction shift the intercept by the estimated
magnitude.

If you estimate a model with two dummy variables and an
interaction between the two characteristics, you end up with
one of four possible outcomes:

One regression line: The dummy and dummy interaction
coefficients are zero (or not statistically significant).

Two regression lines: The coefficient for one dummy
variable is significant, but the other dummy coefficient and
the interaction coefficient are zero (or not statistically
significant).

Three regression lines: The dummy coefficients are both
significant, but the interaction coefficient is zero (not
statistically significant).
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Four regression lines: The dummy coefficients and the
interaction coefficients are all significant.

Figure 9-9 shows a graphical depiction of the resulting
regression of an econometric model with a quantitative
variable (X), two significant dummy coefficients, and a
significant interacted dummy coefficient.

Figure 9-9: A regression with a quantitative variable and two
interacted dummy variables

Using data collected from movies, I used STATA to
estimate a model with a quantitative variable, two dummy
variables, and a variable interacting my two dummy variables.
Figure 9-10 contains the STATA output from my regression
using gross box-office revenue (measured in millions of
dollars) as my dependent variable. The movie budget is my
quantitative independent variable. As independent variables, I
also include the dummy variables Female (which equals 1 if
the lead actor is a female and 0 otherwise) and Over40 (which
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equals 1 if the lead actor’s age is over 40 years and 0
otherwise) along with the interaction of those variables,
FemXOver40.

The results in Figure 9-10 suggest that every additional dollar
in the movie’s budget is associated with an additional $1.14
in revenue if the lead actor is male and no more than 40 years
of age. The actor’s gender doesn’t appear to have a
statistically significant effect (p-value is 0.774), but age is
significant at the 9.4 percent level of significance (the p-value
is 0.094). On average, if a lead actor is over 40 years of age,
movie revenue is $8.7 million less than those movies with a
lead actor no more than 40 years of age. The interaction
variable FemXOver40 isn’t significant (p-value is 0.206), so
movie revenue doesn’t appear to be affected by having a lead
character who is both female and over the age 40.

Figure 9-10: STATA regression output using two interacted
dummy variables.

Segregate and Integrate: Testing for Significance
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When using J – 1 dummy variables to represent a qualitative
characteristic that has multiple possible outcomes (as
discussed in the earlier section “Juggling multiple
characteristics with dummy variables”), you have to take into
account the collective significance of those variables. Their
effect can be collectively significant even if they are
individually insignificant (I discuss the difference between
individual and joint significance in Chapter 7). In the
following sections you find out two ways to determine
whether your dummy variables have joint significance.

Revisiting the F-test for joint significance

Testing the joint significance of a group of dummy variables
in a regression model is accomplished by generalizing the
F-test of overall significance to

where RSSr is the residual sum of squares for the restricted
model (the model excluding the dummy variables), RSSur is
the residual sum of squares for the unrestricted model (the
model including the dummy variables), n is the number of
sample measurements, p is the number of independent
variables in the unrestricted model, and q is the number of
dummy variables variables added in your unrestricted model
that are not contained in your restricted model.
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Figure 9-11 contains STATA output where I
estimate a movie revenue model with independent variables
that include two quantitative variables (budget and viewer
ratings), a dummy variable identifying whether the lead actor
is female, a dummy variable indicating whether the lead actor
is over 40 years of age, and three dummy variables
identifying the movie’s genre (action/horror, drama, and
romantic comedy, with the comedy genre used as the
reference group).

The results in Figure 9-11 suggest that every additional dollar
in the movie’s budget is associated with an additional $1.08
in revenue, holding other factors constant. Viewer ratings
(crit) also have a positive effect on revenue, holding other
factors constant. The actor’s gender (p-value = 0.407) and age
(p-value = 0.178) don’t appear to have a statistically
significant effect. When the qualitative characteristics for
genre are considered, only the drama genre has an
individually significant effect, whereas horror and romance
have insignificant p-values. However, the F-test suggests that
genre, overall, is highly statistically significant (p-value =
0.0000, which is less than 0.01 or 1 percent).

Revisiting the Chow test

If you suspect that the parameters of your model vary
depending on the group (or type of observations) being
analyzed, you can test the hypothesis that the structure is
stable using the Chow test, which I introduce you to in
Chapter 8.
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Using a dummy variable and interaction terms, a
test of joint significance can be equivalent to performing a
Chow test. The dummy variable approach to a Chow test is
conducted by applying the following steps:

1. Create a dummy variable (D) that identifies any two
groups suspected of a structural break.

For example, D = 1 if the observation belongs to group A and
D = 0 if the observation belongs to group B.

2. Create interaction variables with your dummy variable
and every other variable in your model.

3. Estimate the regression model that includes the
quantitative, dummy, and interaction variables.

4. Test the joint significance of the dummy variable
identifying the two groups and all the interaction terms
that include this dummy variable.
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Figure 9-11: STATA regression output with F-test of
significance for a group of dummy variables capturing one
qualitative characteristic.

In order to illustrate the equivalence of the Chow test and the
dummy variable approach to testing for a structural break,
begin with

Yi = β0 + β1Xi + εi

where Y is the movie revenue (in millions of dollars) and X is
movie budget (also in millions of dollars), using all
observations to estimate the model (the restricted model).
Then estimate the model separately for movies with a female
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lead and those with a male lead (two unrestricted models).
Use these regression results to calculate the Chow F-test.

Figure 9-12 contains the STATA output needed for
performing a Chow test — the restricted regression with all
movies and the two unrestricted regressions (one using the
sample of movies with female leads and one using the sample
of movies with male leads).
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Figure 9-12: STATA regression output of restricted
regression (all observations) and two unrestricted regressions
(female sample and male sample).

The results can be used to produce the following F-statistic:

Note: The specific components of the F-statistic for the Chow
test are discussed in Chapter 8.

Figure 9-13 contains the STATA output with the
dummy variable approach to the Chow test. Notice that the
F-statistic for joint significance of the dummy variable
identifying female leads and its interaction with the other
variable in the model (budget) is identical to the F-statistic
from the Chow test. In this case, the evidence points to
rejecting the hypothesis of structural stability.
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Figure 9-13: STATA regression output of dummy variable
interacted model with F-test of joint significance.

The advantage of the dummy variable approach to
testing for structural stability is that it allows you to identify
the source of the difference between the groups. In other
words, the F-test (covered in the preceding section) allows
you to identify an overall structural break, but the significance
of the individual coefficients allows you to identify whether
the difference is primarily in the intercept, slope, or both. The
disadvantage of the dummy variable approach is that it may
not be practical if you’re working with numerous independent
variables.
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Part IV

Violations of Classical Regression Model Assumptions
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For a veritable crash course in econometrics
basics, including an easily absorbed rundown of the three
most common estimation problems, access this
book's e-Cheat Sheet at www.dummies.com/extras/
econometrics.

In this part . . .

Understand the nature of the most commonly violated
assumptions of the classical linear regression model (CLRM):
multicollinearity, heteroskedasticity, and autocorrelation.

Use standard procedures to evaluate the severity of
assumption violations in your model.

Evaluate the consequences of common estimation
problems.

Apply remedies to address multicollinearity,
heteroskedasticity, and autocorrelation.
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Chapter 10

Multicollinearity

In This Chapter

Defining multicollinearity and describing its consequences

Discovering multicollinearity issues in your regressions

Fixing multicollinearity problems

Multicollinearity arises when a linear relationship exists
between two or more independent variables in a regression
model. In practice, you rarely encounter perfect
multicollinearity, but high multicollinearity is quite common
and can cause substantial problems for your regression
analysis. Never fear, though. In this chapter, I help you
identify when multicollinearity becomes harmful and the
options available to address the problem.

Distinguishing between the Types of Multicollinearity

Two types of multicollinearity exist:

Perfect multicollinearity occurs when two or more
independent variables in a regression model exhibit a
deterministic (perfectly predictable or containing no
randomness) linear relationship. When perfectly collinear
variables are included as independent variables, you can’t use
the OLS technique to estimate the value of the parameters
(βs). Perfect multicollinearity therefore violates one of the
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classical linear regression model (CLRM) assumptions that I
tell you all about in Chapter 6.

High multicollinearity results from a linear relationship
between your independent variables with a high degree of
correlation but aren’t completely deterministic (in other
words, they don’t have perfect correlation). It’s much more
common than its perfect counterpart and can be equally
problematic when it comes to estimating an econometric
model.

In practice, perfect multicollinearity is uncommon
and can be avoided with careful attention to the model’s
independent variables. However, high multicollinearity is
quite common and can create severe estimation problems. For
this reason, when econometricians point to a multicollinearity
issue, they’re typically referring to high multicollinearity
rather than perfect multicollinearity.

The following sections further illustrate the differences
between perfect and high multicollinearity so that you can
readily spot them — and prevent them.

Pinpointing perfect multicollinearity

Getting a grasp on perfect multicollinearity is easier if you
can picture an econometric model that uses two independent
variables, such as the following:

Yi = β0 + β1Xi1 + β2Xi2 + εi
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Suppose that, in this model,

Xi2 = α0 + α1Xi1

where the αs are constants. By substitution, you obtain

Yi = β0 + β1Xi1 + β2(α0 + α1Xi1) + εi

which indicates that the model collapses and can’t be
estimated as originally specified.

The result of perfect multicollinearity is that you
can’t obtain any structural inferences about the original model
using sample data for estimation. In a model with perfect
multicollinearity, your regression coefficients are
indeterminate and their standard errors are infinite.

Perfect multicollinearity usually occurs when data
has been constructed or manipulated by the researcher. For
example, you have perfect multicollinearity if you include a
dummy variable for every possible group or category of a
qualitative characteristic instead of including a variable for all
but one of the groups (I illustrate how to use dummy variables
in Chapter 9).
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In Figure 10-1, I use STATA to create a variable
that is a linear combination of another variable. Then I plot
the graph of the two variables and include both of them as
independent variables in a regression model. Notice, however,
that the results do not contain parameter estimates for both
variables. Obtaining individual regression coefficients for
every variable is impossible if you have perfect
multicollinearity.
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Figure 10-1: STATA estimation in the presence of perfect
multicollinearity.

Most econometric software programs identify perfect
multicollinearity and drop one (or more) variables prior to
providing the estimation results, taking care of the problem
for you. The good news is that you can avoid perfect
multicollinearity by exhibiting some care in creating variables
and carefully choosing which ones to include as independent
variables.

Zeroing in on high multicollinearity

You can describe an approximate linear relationship, which
characterizes high multicollinearity, as follows:

Xi2 = α0 + α1Xi1 + ui

where the Xs are independent variables in a regression model
and u represents a random error term (which is the component
that differentiates high multicollinearity from perfect
multicollinearity). Therefore, the difference between perfect
and high multicollinearity is that some variation in the
independent variable is not explained by variation in the other
independent variable(s).

The stronger the relationship between the
independent variables, the more likely you are to have
estimation problems with your model.
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Strong linear relationships resulting in high multicollinearity
can sometimes catch you by surprise, but these three
situations tend to be particularly problematic:

You use variables that are lagged values of one
another. For example, one independent variable is an
individual’s income in the current year, and another
independent variable measures an individual’s income in the
previous year. These values may be completely different for
some observations, but for most observations the two are
closely related.

You use variables that share a common time trend
component. For example, you use yearly values for GDP
(gross domestic product) and the DJIA (Dow Jones Industrial
Average) as independent variables in a regression model. The
value for these measurements tends to increase (with
occasional decreases) and generally move in the same
direction over time.

You use variables that capture similar phenomena. For
example, your independent variables to explain crime across
cities may be unemployment rates, average income, and
poverty rates. These variables aren’t likely to be perfectly
correlated, but they’re probably highly correlated.

Technically, the presence of high multicollinearity doesn’t
violate any CLRM assumptions. Consequently, OLS
estimates can be obtained and are BLUE (best linear unbiased
estimators) with high multicollinearity.

314



Although OLS estimators remain BLUE in the
presence of high multicollinearity, it reinforces a desirable
repeated sampling property. In practice, you probably don’t
have an opportunity to utilize multiple samples, so you want
any given sample to produce sensible and reliable results.
With high multicollinearity, the OLS estimates still have the
smallest variance, but smallest is a relative concept and
doesn’t ensure that the variances are actually small. In fact,
the larger variances (and standard errors) of the OLS
estimators are the main reason to avoid high multicollinearity.

The typical consequences of high multicollinearity include
the following:

Larger standard errors and insignificant t-statistics:
The estimated variance of a coefficient in a multiple
regression is

where is the mean squared error (MSE) and is the
R-squared value from regressing Xk on the other Xs. Higher
multicollinearity results in a larger , which increases the
standard error of the coefficient. Figure 10-2 illustrates the
effect of multicollinearity on the variance (or standard error)
of a coefficient.
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Because the t-statistic associated with a coefficient is the ratio

of the estimated coefficient to the standard error ( ),
high multicollinearity also tends to result in insignificant
t-statistics.

Coefficient estimates that are sensitive to changes in
specification: If the independent variables are highly
collinear, the estimates must emphasize small differences in
the variables in order to assign an independent effect to each
of them. Adding or removing variables from the model can
change the nature of the small differences and drastically
change your coefficient estimates. In other words, your results
aren’t robust (a topic that you can learn about in Chapter 8).

Nonsensical coefficient signs and magnitudes: With
higher multicollinearity, the variance of the estimated
coefficients increases, which in turn increases the chances of
obtaining coefficient estimates with extreme values.
Consequently, these estimates may have unbelievably large
magnitudes and/or signs that counter the expected
relationship between the independent and dependent
variables. Figure 10-3 illustrates how the sampling
distribution of the estimated coefficients is affected by
multicollinearity.
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Figure 10-2: The variance of βk as a function of the
multicollinearity between Xk and the other independent
variables.

Figure 10-3: Effect of multicollinearity on variance of
estimated coefficients.
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When two (or more) variables exhibit high
multicollinearity, there’s more uncertainty as to which
variable should be credited with explaining variation in the
dependent variable. For this reason, a high R-squared value
combined with many statistically insignificant coefficients is
a common consequence of high multicollinearity.

Rules of Thumb for Identifying Multicollinearity

Because high multicollinearity doesn’t violate a CLRM
assumption and is a sample-specific issue, researchers
typically choose from a couple popular alternatives to
measure the degree or severity of multicollinearity.

You don’t use formal statistical tests to detect
multicollinearity. Instead, you use one or two sample
measurements as indicators of a potential multicollinearity
problem. The two most common are pairwise correlation
coefficients and variance inflation factors, and I explain how
to use them in the following sections.

Pairwise correlation coefficients

One way in which you can check for multicollinearity is by
calculating the pairwise correlation coefficient, which is the
value of sample correlation (something you can review in
Chapter 2), for every pair of independent variables.
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The sample correlation coefficient measures the
linear association between any two independent variables, Xk
and Xj. You calculate a sample correlation coefficient with
this equation:

where is the sample mean of Xk, is the sample mean of
Xj, skj is the covariance between Xk and Xj, sk is the sample
standard deviation of Xk, and sj is the sample standard
deviation of Xj.

As a rule of thumb, correlation coefficients around
0.8 or above may signal a multicollinearity problem.

To see how to calculate pairwise correlation
coefficients, you can start with data from Major League
Baseball players. Say you estimate a model with the natural
log of the player’s contract value as the dependent variable
and several player characteristics as independent variables.
The independent variables include three-year averages for the
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player’s weighted measure of singles, doubles, triples, and
home runs known as slugging percentage (slg_3_avg); their
ability to get on base by any means, including walks, known
as on-base-percentage (obp_3_avg); the frequency with
which they help their teammates score runs known as
runs-batted-in (rbi_3_avg); stolen bases (sb_3_avg); at-bats
(ab_3_avg); errors (e_3_avg); the player’s age; and the
player’s tenure (years) with the current team. Figure 10-4
shows STATA’s regression output and the correlation matrix
of the independent variables. The correlation matrix contains
the correlation coefficients for each pair of independent
variables.

Figure 10-4: STATA regression output and correlation
matrix for independent variables.
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The correlation between slugging percentage and
on-base-percentage and between runs-batted-in and at-bats
are both near the 0.8 rule of thumb value. Additionally, the
correlation between slugging percentage and runs-batted-in is
also quite high.

Of course, before you officially determine that you
have a multicollinearity problem due to a correlation
coefficient near 0.8 or above, you should check your results
for evidence of multicollinearity (insignificant t-statistics,
sensitive coefficient estimates, and nonsensical coefficient
signs and values). Also, keep in mind that low pairwise
correlation coefficients don’t necessarily indicate that you’re
clear of multicollinearity issues. The value of your
independent variable could be determined by a linear
combination of several other independent variables. The
pairwise correlation coefficients only identify the linear
relationship of a variable with one other variable.

Auxiliary regression and the variance inflation factor (VIF)

Calculating the variance inflation factor (VIF) for every
independent variable is another way to check for
multicollinearity. VIF measures the linear association
between an independent variable and all the other
independent variables.
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A VIF for any given independent variable is
calculated by

where is the R-squared value obtained by regressing
independent variable Xk on all the other independent variables
in the model.

Most econometric software programs have a command that
you can execute after estimating a regression to obtain the
VIFs for each independent variable. However, if you need to
calculate the VIFs individually, just follow these steps:

1. Determine the econometric model and obtain the OLS
estimates.

For example, your model may be something like:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi

2. Estimate auxiliary regressions by regressing each
independent variable on the other independent variables
and obtain the R-squared of each auxiliary regression.

For example, using the model in Step 1, you estimate the
auxiliary regressions

Xi1 = α0 + α1Xi2 + α2Xi3 + ui1
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Xi2 = δ0 + δ1Xi1 + δ2Xi3 + ui3

Xi3 = γ0 + γ1Xi1 + γ2Xi2 + ui3

to obtain , , and .

3. Obtain the VIF for each independent variable with the
formula

As a rule of thumb, VIFs greater than 10 signal a
highly likely multicollinearity problem, and VIFs between 5
and 10 signal a somewhat likely multicollinearity issue.

Time to put VIFs into practice. Using the same
example from the last section, say you estimate a model with
the natural log of an MLB player’s contract value as the
dependent variable and several player characteristics as
independent variables. Again, use three-year averages for the
player’s slugging percentage (slg_3_avg), on-base-percentage
(obp_3_avg), runs-batted-in (rbi_3_avg), stolen bases
(sb_3_avg), at-bats (ab_3_avg), errors (e_3_avg), the player’s
age, and the player’s tenure with the current team as
independent variables. Figure 10-5 shows STATA’s
regression output followed by a table of VIFs. STATA
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internally calculates the auxiliary regressions and produces
the VIF for every independent variable in the model.

Figure 10-5: STATA regression output and variance
inflations factors (VIFs).

The VIF for runs-batted-in (VIF = 9.75) suggests a very good
chance of a multicollinearity problem. This suspicion is
complemented by the surprising result that slugging
percentage and on-base-percentage (two characteristics that
are important in measuring the offensive contributions of a
baseball player and should have a positive impact on their
salary) are statistically insignificant. The high VIF, combined
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with this unexpected result, should lead you to suspect that
high multicollinearity is problematic.

Before announcing to the world that you have a
multicollinearity problem due to a high VIF, be sure to check
your results for evidence of multicollinearity (insignificant
t-statistics, sensitive or nonsensical coefficient estimates, and
nonsensical coefficient signs and values). A high VIF is only
an indicator of potential multicollinearity, but it may not
result in a large variance for the estimator if the variance of
the independent variable is also large.

Knowing When and How to Resolve Multicollinearity Issues

Resolving high multicollinearity may only fix issues that are
unique to a specific sample. In other words, mitigating high
multicollinearity in one case doesn’t necessarily lead to a
solution in another similar case. Furthermore, you need to be
careful that your efforts to resolve high multicollinearity don’t
lead to other serious problems (violations of CLRM
assumptions).

Your success in resolving high multicollinearity
depends on its complexity and severity in the sample you’re
using for econometric analysis. A successful resolution to
high multicollinearity likely requires some experimentation
with a few different potential solutions while keeping in mind
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that the solutions to multicollinearity can cause more severe
problems in other areas.

But how do you know when to proceed with pursuing a
resolution? Well, follow these guidelines:

If the primary purpose of your study is to estimate a
model for prediction or forecasting, then the best solution
may be to do nothing.

If you want to obtain reliable estimates of the individual
parameters in the model, you need to be more concerned with
multicollinearity. (But you shouldn’t modify your model if
the t-statistics of the suspect variable(s) are greater than 2 and
the coefficient signs and magnitudes make economic sense.)

When considering various resolutions to
multicollinearity, I advise taking a holistic approach that
considers the benefits of eliminating high correlation between
the independent variables against the costs of addressing an
issue that’s specific to the sample you’re using rather than the
population of interest. If you’ve done this and decided that
resolving the multicollinearity issue is your best option, then
you have a few ways of proceeding. You can

Acquire more data.

Apply a new model.

Cut the problem variable loose.
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I discuss these options in the following sections.

Get more data

Gathering additional data can not only improve the
efficiency (in other words, reduce the variance) of your
estimates but also help with multicollinearity issues. How so?
Well, high multicollinearity may be unique to your sample, so
the acquisition of additional data is a potential solution.
Additional data can be compiled by acquiring more
observations for an existing sample or by appending the data
with a new sample.

If you’re using cross-sectional data (covered in Chapter 4),
you may be able to obtain more data by returning to your
population of interest immediately or after a period of time
(thereby creating a pooled cross section). Another way to
increase the number of observations with cross-sectional or
panel data is to reduce the level of aggregation. For example,
rather than using country-level data, you could consider
state-, county-, city-, household-, or individual-level data.

If you’re working with time-series data (also covered in
Chapter 4), you can increase the number of observations by
increasing the frequency of the data. For example, instead of
using yearly data, you could consider quarterly, monthly,
daily, or even hourly data. Of course, you have to consider
whether increasing the frequency is appropriate or possible.
In the United States, for example, employment data is
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tabulated on a monthly basis, so obtaining these figures on an
hourly basis is impossible.

The collection of additional data may be costly or
could inadvertently result in a change of your population, so
don’t automatically assume a “more is better” mentality when
building your database.

Use a new model

In some cases, you may be able to rethink your theoretical
model or the way in which you expect your independent
variables to influence your dependent variable in order to
address a multicollinearity issue.

Respecifying the econometric model can address a
multicollinearity issue by transforming highly correlated
independent variables. The most common ways of
accomplishing it are through log transformations, reciprocal
functions, first-differencing, and combining collinear
independent variables.

In Chapter 8, I discuss various forms of log transformations
(log-log, log-linear, and linear-log) and reciprocal functions.
Because those transformations are nonlinear, independent
variables that exhibited a linear relationship may no longer do
so after respecification. I address the other two options in the
next sections.

328



In some cases, high multicollinearity may persist
even after respecifying the model. However, a more serious
concern is resolving a multicollinearity issue with an
increased chance of committing specification bias.

First-differencing

First-differencing is a technique that can be used with data
that has a time component. In other words, its use is limited to
models utilizing time-series or panel data. For instance,
suppose you observe each cross-sectional unit i (a country, or
state, or household, or whatever) in more than one time period
(t). A basic econometric model would have the form

where the i and t subscripts represent the cross-sectional unit
and time period, respectively. If you subtract the previous
period’s values of your variables from the values in the
current period for each cross-sectional unit, you’d have

or

where Δ represents the change from period t – 1 to period t.
This equation is called the first-differenced equation, and
when you obtain estimates for the βs using OLS, they’re
called first-differenced estimators.
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If you’re planning to use first-differencing, make
sure your variables have variation over time. If not, ΔXik = 0
and you can’t estimate the model using OLS.

The first-differencing technique has its costs:

Losing observations: In order to calculate the change in a
variable, you need to sacrifice one time period.

Losing variation in your independent variables: This
loss in variation can result in insignificant coefficients, even
with the multicollinearity issues resolved.

Changing the specification (possibly resulting in
misspecification bias): Modeling wage levels, for example,
isn’t the same as modeling changes in wages.

The composite index variable

You can create a composite index variable by combining
collinear variables that measure similar characteristics.
Suppose you have two highly collinear and related variables
X1 and X2. You can create an index variable (X3) with a linear
combination of related variables such as Xi3 = aXi1 + bXi2
where a and b are constants. If the index variable is a
weighted average of X1 and X2, then a + b = 1.
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The consumer price index (CPI) is an example of a composite
index variable. Applied econometricians often include the
CPI as an independent variable in a model rather than
numerous variables measuring prices of various goods. This
avoids the high multicollinearity that would be likely if prices
of goods were included as separate variables.

When you combine variables into an index, their
association should make sense. For example, in a model using
independent variables measured at the city-level,
unemployment rates and poverty rates can be combined into
an “economic conditions” variable. This type of procedure
consolidates the collinear variables and creates a more
parsimonious model.

Never combine variables into an index that would,
individually, be expected to have opposite signs. Doing so
makes interpretation difficult, if not impossible. It could even
make the coefficient insignificant as the variables end up
working against each other.

Expel the problem variable(s)

Dropping highly collinear independent variables from your
model is one way to address high multicollinearity. Of course,
anytime you drop a variable from an econometric model, you
run the risk of committing a specification error. If variables
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are redundant, however, then dropping a variable improves an
overspecified model.

In cases of severely high multicollinearity
(correlation coefficients greater than 0.9), you don’t have to
follow any statistical rationale for choosing to drop one
variable over another. If you’re using VIFs to detect
multicollinearity, a variable with a VIF greater than 10 is
usually the most likely to be dropped. In either case, however,
you should try to retain the variable(s) with the strongest
theoretical justification.

If it’s not clear which variable should be dropped or if the
severity of multicollinearity is questionable, then you need to
weigh the cost and benefit of dropping a variable from the
model.

The cost of dropping a variable is that you’re
effectively forcing the coefficient of the variable to be zero. If
the effect of the variable isn’t actually zero and the variable
isn’t completely redundant, you’ve created a specification
bias. I discuss specification issues and the amount of bias
created by omitting a relevant variable in Chapter 8.

In some cases, the benefit of reduced variability in the other
coefficients more than compensates for any bias that’s been
introduced by dropping a variable. You can evaluate it by
examining the mean square error (MSE). A smaller MSE
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usually signals that the statistical benefits of dropping the
variable exceed the costs of specification bias.

The most practical advice I can provide about
dropping a variable to resolve a multicollinearity issue is to
save it as a last resort and place theoretical considerations
above purely statistical justifications.

To see the effects of dropping a variable, consider the results
from a model of baseball player salaries (refer to Figure
10-5). The VIF for runs-batted-in is quite high, and
theoretically important variables are statistically insignificant.
For example, slugging percentage, on-base-percentage, and
at-bats (characteristics that are important in measuring the
offensive contributions of a baseball player and should have a
positive impact on their salary) are statistically insignificant.
The high VIFs, combined with unexpected results, would lead
any econometrician to suspect that the model may be
overspecified and therefore may benefit from dropping a
variable.

In Figure 10-6, I re-estimate the model of baseball
player salaries after dropping the variable with the highest
VIF (runs-batted-in). In comparison to Figure 10-5, the results
in Figure 10-6 make much more sense. Slugging percentage
and at-bats now have the expected significance and the
appropriate (positive) magnitude. On-base-percentage
remains statistically insignificant, but the VIFs don’t show
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any indication that the lack of statistical significance is due to
high multicollinearity. The model now simply identifies the
relevant variables in baseball salary determination with more
accuracy.

The main takeaway here is that

The results no longer contain unreasonably large
coefficients that are statistically insignificant. Some
coefficients remain insignificant, but they also have small
magnitudes.

The variable believed to be one of the most important
performance measures in baseball (slugging percentage) is
significant after the high multicollinearity is addressed. This
is another sensible outcome.

My original results in Figure 10-5 didn’t contain
coefficients with strange signs, even though it’s definitely
possible with high multicollinearity.
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Figure 10-6: STATA regression output with VIF values for
each independent variable.
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Chapter 11

Heteroskedasticity

In This Chapter

Understanding the difference between homoskedasticity
and heteroskedasticity

Uncovering the consequences of heteroskedasticity

Identifying harmful heteroskedasticity

Fixing heteroskedasticity problems

As I explain in Chapter 6, a critical assumption of the
classical linear regression model is homoskedasticity — that
the variance of the error term is constant over various values
of the independent variables. However, this assumption may
not always hold. When it doesn’t happen, you have
heteroskedasticity. This chapter shows you how to determine
whether you have heteroskedasticity in a particular
application and what you can do to remedy it if you do.

Distinguishing between Homoskedastic and Heteroskedastic
Disturbances

The error term is the most important component of the
classical linear regression model (CLRM). Most of the
CLRM assumptions that allow econometricians to prove the
desirable properties of the OLS estimators (the Gauss-Markov
theorem) directly involve characteristics about the error term
(or disturbances). One of the CLRM assumptions deals with

336



the conditional variance of the error term; namely, that the
variance of the error term is constant (homoskedastic). In the
following sections, I describe the difference between
homoskedasticity and heteroskedasticity and illustrate the
consequences of heteroskedasticity on OLS.

Homoskedastic error versus heteroskedastic error

CLRM relies on the error term variance being
constant. Enter the term homoskedasticity, which refers to a
situation where the error has the same variance regardless of
the value(s) taken by the independent variable(s).
Econometricians usually express homoskedasticity as

, where Xi
represents a vector of values for each individual and for all
the independent variables.

As you can see in Figure 11-1, when the error term is
homoskedastic, the dispersion of the error remains the same
over the range of observations and regardless of functional
form.
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Figure 11-1: Model with a constant (homoskedastic) error
variance.

In many situations, however, the error term doesn’t
have a constant variance, leading to heteroskedasticity —
when the variance of the error term changes in response to a
change in the value(s) of the independent variable(s).
Econometricians typically express heteroskedasticity as

.

If the error term is heteroskedastic, the dispersion of the error
changes over the range of observations, as shown in Figure
11-2. The heteroskedasticity patterns depicted in Figure 11-2
are only a couple among many possible patterns. Any error
variance that doesn’t resemble that in Figure 11-1 is likely to
be heteroskedastic.
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If you recall that homogeneous means uniform or
identical, whereas heterogeneous is defined as assorted or
different, you may have an easier time remembering the
concept of heteroskedasticity forever. Lucky you!

Figure 11-2: Models with a changing (heteroskedastic) error
variance.

The consequences of heteroskedasticity

Heteroskedasticity violates one of the CLRM assumptions.
When an assumption of the CLRM is violated, the OLS
estimators may no longer be BLUE (best linear unbiased
estimators).

Specifically, in the presence of heteroskedasticity,
the OLS estimators may not be efficient (achieve the smallest
variance). In addition, the estimated standard errors of the
coefficients will be biased, which results in unreliable
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hypothesis tests (t-statistics). The OLS estimates, however,
remain unbiased.

Under the assumption of homoskedasticity, in a model with
one independent variable (Yi = β0 + β1Xi + εi), the variance of
the estimated slope coefficient is

where is the homoskedastic variance of the error and

.

However, without the homoskedasticity assumption, the
variance of β1 is

where is the heteroskedastic variance of the error.

Therefore, if you fail to appropriately account for
heteroskedasticity in its presence, you improperly calculate
the variances and standard errors of the coefficients. The
t-statistic for coefficients is calculated with

Therefore, any bias in the calculation of the standard errors is
passed on to your t-statistics and conclusions about statistical
significance.
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Heteroskedasticity is a common problem for OLS
regression estimation, especially with cross-sectional and
panel data. (I tell you all about these two types of data in
Chapter 4.) However, you usually have no way to know in
advance if it’s going to be present, and theory is rarely useful
in anticipating its presence.

Detecting Heteroskedasticity with Residual Analysis

The challenge to identifying heteroskedasticity is that you can
only know if you have the entire population corresponding
to the chosen independent variables (Xs). In practice, you’ll
be using a sample with only a limited number of observations
for a particular X. Consequently, in applied situations the
detection of heteroskedasticity relies on your intuition, prior
empirical work, educated guesswork, or even sheer
speculation.

Fortunately, a number of well-established techniques can
guide you through the detection process. They involve both
visual inspections and formal statistical tests, as you discover
in the next sections.

Examining the residuals in graph form

An informal way of checking for heteroskedasticity is with a
graphical examination of the residuals.
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If you want to use graphs for an examination of
heteroskedasticity, you first choose an independent variable
that’s likely to be responsible for the heteroskedasticity. Then
you can construct a scatter diagram with the chosen
independent variable and the squared residuals from your
OLS regression.

Figure 11-3 illustrates the typical pattern of the residuals if
the error term is homoskedastic.

Figure 11-4 exhibits the potential existence of
heteroskedasticity with various relationships between the
residual variance (squared residuals) and the values of the
independent variable X. Each graph represents a specific
example, but the possible heteroskedasticity patterns are
limitless because the core problem in this case is the changing
of the residual variances as the value of the independent
variable X changes.
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Figure 11-3: Squared residuals displaying evidence of
homoskedasticity with respect to independent variable X.

Figure 11-4: Squared residual suggesting heteroskedasticity
with various patterns.

Graphical examinations don’t provide evidence of
homoskedasticity or heteroskedasticity. They merely suggest
independent variables that may be related to the variability of
the error term.

You can use the graphical result comparing the
squared residuals to an independent variable to set up
additional (formal) tests of heteroskedasticity.
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Brushing up on the Breusch-Pagan test

The Breusch-Pagan (BP) test is one of the most
common tests for heteroskedasticity. It begins by allowing the
heteroskedasticity process to be a function of one or more of
your independent variables, and it’s usually applied by
assuming that heteroskedasticity may be a linear function of
all the independent variables in the model. This assumption
can be expressed as .

The values for aren’t known in practice, so the
are calculated from the residuals and used as proxies for .
Generally, the BP test is based on the estimation of

.

Alternatively, a BP test can be performed by estimating
where represents the predicted values from

.

Here’s how to perform a BP test:

1. Estimate your model, ,
using OLS.
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2. Obtain the predicted Y values ( ) after estimating the
model.

3. Estimate the auxiliary regression, , using
OLS.

4. Retain the R-squared value from this auxiliary
regression.

5. Calculate the F-statistic, , or the
chi-squared statistic, .

The degrees of freedom for the F-test are equal to 1 in the
numerator and n – 2 in the denominator. The degrees of
freedom for the chi-squared test are equal to 1. If either of
these test statistics is significant, then you have evidence of
heteroskedasticity. If not, you fail to reject the null hypothesis
of homoskedasticity.

To show you how the BP test works, I use some
data about Major League Baseball players. First, I estimate a
model with the natural log of the player’s contract value as
the dependent variable and several player characteristics as
independent variables, including three-year averages for the
player’s slugging percentage and at-bats, the player’s age, and
the player’s tenure with the current team. Then I run the BP
test in STATA, which retains the predicted Y values,
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estimates the auxiliary regression internally, and reports the
chi-squared test. I can also request that STATA conduct the
F-test version of the test. In Figure 11-5, I show both results,
and they’re consistent in rejecting the null hypothesis of
homoskedasticity. Therefore, the statistical evidence implies
that heteroskedasticity is present.

Figure 11-5: STATA output of OLS regression followed by a
Breusch-Pagan test for heteroskedasticity.

A weakness of the BP test is that it assumes the
heteroskedasticity is a linear function of the independent
variables. Failing to find evidence of heteroskedasticity with
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the BP doesn’t rule out a nonlinear relationship between the
independent variable(s) and the error variance. Additionally,
the BP test isn’t useful for determining how to correct or
adjust the model for heteroskedasticity.

Getting acquainted with the White test

Another extremely common test for heteroskedasticity is the
White test, which begins by allowing the heteroskedasticity
process to be a function of one or more of your independent
variables. It’s similar to the Breusch-Pagan test (see the
preceding section), but the White test allows the independent
variable to have a nonlinear and interactive effect on the error
variance.

Typically, you apply the White test by assuming
that heteroskedasticity may be a linear function of all the
independent variables, a function of their squared values, and
a function of their cross products (XkXj for k ≠ j).

As in the Breusch-Pagan test, because the values for
aren’t known in practice, the are calculated from the

residuals and used as proxies for . The White test is based
on the estimation of the following:
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Alternatively, a White test can be performed by estimating
where represents the predicted values

from .

Follow these five steps to perform a White test:

1. Estimate your model, ,
using OLS.

2. Obtain the predicted Y values ( ) after estimating your
model.

3. Estimate the model using OLS.

4. Retain the R-squared value ( ) from this regression.

5. Calculate the F-statistic, , or the
chi-squared statistic, .

The degrees of freedom for the F-test are equal to 2 in the
numerator and n – 3 in the denominator. The degrees of
freedom for the chi-squared test are 2. If either of these test
statistics is significant, then you have evidence of
heteroskedasticity. If not, you fail to reject the null hypothesis
of homoskedasticity.
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Imagine that you’re estimating a model with the
natural log of Major League Baseball players’ contract value
as the dependent variable and several player characteristics as
independent variables. (See the preceding section for more
detail.) When you plug this information into STATA (which
lets you run a White test via a specialized command), the
program retains the predicted Y values, estimates the auxiliary
regression internally, and reports the chi-squared test. Figure
11-6 shows the resulting output, which suggests you should
reject the homoskedasticity hypothesis.

Although the White test provides a flexible
functional form that’s useful for identifying nearly any pattern
of heteroskedasticity, it’s not useful for determining how to
correct or adjust the model for heteroskedasticity.
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Figure 11-6: STATA output of OLS regression followed by a
White test for heteroskedasticity.

Trying out the Goldfeld-Quandt test

The Goldfeld-Quandt (GQ) test begins by assuming
that a defining point exists and can be used to differentiate the
variance of the error term. Sample observations are divided
into two groups, and evidence of heteroskedasticity is based
on a comparison of the residual sum of squares (RSS) using
the F-statistic.

The assumption is that the researcher can determine the
appropriate criteria to separate the sample. Typically, a
predetermined value for one of the independent variables is
used as a threshold, which places some observations in Group
A and the other observations in Group B.

Most econometrics software doesn’t let you
perform a GQ test automatically, but you can use software to
conduct this test by taking these simple steps:

1. Estimate your model separately for each group and
obtain the residual sum of squares for Group A (RSSA)
and the residual sum of squares for Group B (RSSB).

2. Compute the F-statistic by
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The null hypothesis for the GQ test is homoskedasticity. The
larger the F-statistic, the more evidence you’ll have against
the homoskedasticity assumption and the more likely you
have heteroskedasticity (different variance for the two
groups).

Assume for a moment that you’re estimating a
model with the natural log of Major League Baseball players’
contract value as the dependent variable and several player
characteristics as independent variables. Three-year averages
for slugging percentages (slg_3_avg) and at-bats (ab_3_avg),
age, and tenure (the number of years a player has been with
his current team) are the independent variables. You can
arbitrarily divide the sample by the average number of at-bats.
Players in Group A have below-average at-bats, and players
in Group B have above-average at-bats. The F-statistic in
Figure 11-7, which shows the process of performing a GQ
test in STATA, suggests that the difference in the RSS for the
two groups is marginally significant in a one-tailed test
(p-value = 0.0730).
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Figure 11-7: STATA output of OLS regression followed by a
Goldfeld-Quandt test for heteroskedasticity.

A weakness of the GQ test is that the result is
dependent on the criteria chosen for separating the sample
measurements into their respective groups. This process is
often quite arbitrary, so failing to find evidence of
heteroskedasticity in one test doesn’t rule it out with different
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criteria used for separating the sample. Consequently, the GQ
test doesn’t provide any guidance for correcting or adjusting
the model for heteroskedasticity, which is one reason why
applied econometricians typically don’t rely on it in order to
test for heteroskedasticity.

Conducting the Park test

The Park test begins by assuming a specific model
of the heteroskedastic process. Specifically, it assumes that
the heteroskedasticity may be proportional to some power of
an independent variable (Xk) in the model. This assumption
can be expressed as .

You can obtain a linearized version of the Park model by
using a log transformation:

Because the values for aren’t known in practice, your
are calculated from the residuals and used as proxies for .

Most econometrics software programs don’t have
commands that allow you to automatically perform a Park
test. However, you can perform the test by following these
steps:
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1. Estimate the model using
OLS.

2. Obtain the squared residuals, , after estimating your
model.

3. Estimate the model using OLS.

4. Examine the statistical significance of α using the

t-statistic: .

The value of γ from estimating the regression
is an estimate of the constant

(homoskedastic) portion of the error variance. Consequently,
if the estimate of the α coefficient is statistically significant,
then you have evidence of heteroskedasticity. If not, you fail
to reject the null hypothesis of homoskedasticity.

Using data from Major League Baseball players
once again, you can estimate a model with the natural log of
the player’s contract value as the dependent variable and
several player characteristics as independent variables. The
independent variables include three-year averages for the
player’s slugging percentage (slg_3_avg) and at-bats
(ab_3_avg), the player’s age, and the player’s tenure (years)
with the current team. In Figure 11-8, I illustrate the
step-by-step process of performing a Park test in STATA. My
assumption is that if there’s heteroskedasticity, then at-bats is
the variable responsible for it. In this case, the coefficient for
the variable lnabavg (using the natural log of ab_3_avg as
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specified by the Park test) is statistically significant with a
p-value of 0.03. Therefore, I’d reject the hypothesis of
homoskedasticity.

Figure 11-8: STATA output of OLS regression followed by a
Park test for heteroskedasticity.
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The Park test’s weakness is that it assumes the
heteroskedasticity has a particular functional form.
Furthermore, identifying heteroskedasticity with one
independent variable doesn’t rule out the fact that other
variables may also play a role.

Although discussions of the Park test are still
common in many econometrics textbooks, applied
econometricians typically rely on other alternatives to test for
heteroskedasticity, such as the Breusch-Pagan or White tests.

Correcting Your Regression Model for the Presence of
Heteroskedasticity

After you determine that heteroskedasticity is likely, you can
modify the estimation of your econometric model to obtain
accurate standard errors. The two most common solutions to
heteroskedasticity are weighted least squares and robust
standard errors. I tell you all about both solutions in the
following sections.

Weighted least squares (WLS)

The weighted least squares (WLS) technique
transforms the original (heteroskedastic) model into a
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homoskedastic one by using information about the nature of
the heteroskedasticity. The goal of the WLS transformation is
to make the error term in the original econometric model
homoskedastic. First, you assume that the heteroskedasticity
is determined proportionally from some function of the
independent variables. Then you use knowledge of this
relationship to divide both sides of the original model by the
component of heteroskedasticity that give the error term a
constant variance.

Suppose your original model takes the form
and

that the variance of the error term is defined by
, where Xi is a vector of some or all of

the independent variables and h(Xi) represents the portion of
the error variance that’s unique to each observation and is
some function of the independent variables. Notice that this
violates the assumption of homoskedasticity because the error
isn’t constant and depends on the value of h(Xi), which
changes as the value of any independent variable changes.

Because the variance of the error is , you can generate
a homoskedastic variance by dividing both sides of the
original model by . This results in

which satisfies the homoskedasticity assumption because
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The β*s are the WLS estimators and are a specific type of
generalized least squares (GLS) estimator (In this case, the
GLS estimator is used to correct for heteroskedasticity, but
you can also use a GLS estimator to address autocorrelation
issues, as I explain in Chapter 12).

The objective of OLS is

. However, for WLS,

the objective is so
are the weights.

In practice, knowing the exact functional form of
h(Xi) is impossible. In applied settings, you can assume a
functional form and estimate each hi. That is, you use
values for weighting in the GLS transformation instead of hi.
Estimators using this procedure are known as feasible
generalized least squares (FGLS) estimators.

The exponential function is the most common approach to
modeling heteroskedasticity. This approach assumes that
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which implies

and

In practice, you replace the unobserved error, ε, with the OLS
residual.

You can use WLS with a FGLS procedure by applying the
following steps:

1. Estimate the original model,
, and obtain the residuals, .

2. Square the residuals and take their natural log to
generate .

3. Estimate the regression
or and obtain the fitted values:

.

4. Take the inverse natural log of the fitted residuals
to obtain .

5. Estimate the regression by
WLS using as weights.
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If the proposed model of heteroskedasticity,
, is misspecified, then WLS may not be more

efficient than OLS. The problem is that misspecification of
the heteroskedasticity is difficult to identify.

Using data from Major League Baseball players,
you can estimate a model using the natural log of the player’s
contract value as the dependent variable and several player
characteristics as independent variables, including 3-year
averages for slugging percentages and at-bats, player age, and
player tenure on his current team. You can use STATA to
perform WLS by using a standard FGLS procedure. Figure
11-9 shows the resulting output. As you can see, the WLS
estimates are similar to the OLS estimates, but they’re not
identical. All the coefficients have the same sign before and
after the heteroskedasticity correction. In this example, all the
coefficients that were statistically significant with OLS
remain significant with WLS. However, the effect of tenure is
marginally significant with WLS but wasn’t significant with
OLS.

If your WLS coefficients are drastically different
from the OLS coefficients, you should be concerned that the
primary issue isn’t heteroskedasticity. A large difference
between OLS and WLS coefficients is more likely to imply

360



that the model suffers from functional form specification bias
(you can turn to Chapter 8 for more details about this type of
bias).

Robust standard errors (also known as White-corrected
standard errors)

The calculation of robust standard errors is the
most popular remedy for heteroskedasticity. It uses the OLS
coefficient estimates but adjusts the OLS standard errors for
heteroskedasticity without transforming the model being
estimated. The robust standard errors are also known as
White-corrected standard errors and
heteroskedasticity-corrected standard errors. The strength of
this method is that it’s able to deal with heteroskedasticity
without making assumptions about the functional form of
heteroskedasticity.

361



362



Figure 11-9: Using STATA to produce weighted least
squares (WLS) estimates.

In a model with one independent variable and
homoskedasticity, the variance of the estimator can be

reduced to . However, with
heteroskedasticity, the variance of the estimator is

.

In the real world, the terms aren’t directly
observable. In applied settings, the squared residuals ( ) are
used as estimates of . Using these values to estimate
standard errors of the OLS estimators produces the robust
standard errors.

In a model with one independent variable, the robust standard
error is

Generalizing this result to a multiple regression model, the
robust standard error is
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where the are the residuals obtained from the auxiliary
regression of Xj on all the other independent variables.

Here’s how to calculate robust standard errors:

1. Estimate your original multivariate model,
, and obtain the squared

residuals, .

2. Estimate p auxiliary regressions of each independent
variable on all the other independent variables and retain
all p squared residuals ( ).

3. For any independent variable, calculate the robust
standard errors:

Most econometrics software programs allow you to
produce the robust standard errors with a simple command
that instantaneously performs all the preceding steps.
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The use of robust standard errors to compute
t-statistics, confidence intervals, and p-values relies on
asymptotic properties. That is, the reliability of hypothesis
testing using robust standard errors improves with larger
sample sizes.

To see what I mean, imagine that you’re working
again with the same data for MLB players. (See the preceding
sections for more detail.) Using STATA to obtain robust
standard errors, you simply need to utilize the “robust” option
with the basic “regress” command.

Figure 11-10 shows the standard results along with the robust
standard errors. Notice that both sets of results have identical
coefficients. However, the robust standard errors change the
t-statistics, confidence intervals, and p-values for the
coefficients. Some of the standard errors increase with the
heteroskedasticity correction and others decrease. In this
example, all the coefficients that were originally significant
remain significant with the heteroskedasticity correction.
However, the effect of tenure was originally insignificant, but
is marginally significant using the robust standard error.
Note: The goal isn’t to make all coefficients statistically
significant, but to obtain more accurate standard errors in the
presence of heteroskedasticity. If some standard errors
increase to the point of making some coefficients insignificant
that were previously significant, then you should accept this
as part of your correction and more legitimate results.
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Figure 11-10: Using STATA to produce robust
(heteroskedasticity-corrected) standard errors.

Numerous versions of robust standard errors exist for the
purpose of improving the statistical properties of the
heteroskedasticity correction. Applied econometricians
usually rely on any version calculated by their econometrics
software, though, because no form of robust standard error is
preferred above all others.
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Chapter 12

Autocorrelation

In This Chapter

Examining autocorrelation patterns

Revealing the consequences of autocorrelation

Testing for autocorrelation

Correcting econometric models when autocorrelation is
present

Autocorrelation, also known as serial correlation, may exist
in a regression model when the order of the observations in
the data is relevant or important. In other words, with
time-series (and sometimes panel or logitudinal) data,
autocorrelation is a concern. When a regression model is
estimated using data of this nature, the value of the error in
one period may be related to the value of the error in another
period (autocorrelation), which results in a violation of a
classical linear regression model (CLRM) assumption. (I tell
you all about these in Chapter 6.)

In this chapter, you discover exactly why autocorrelation is
problematic, how to identify different autocorrelation
patterns, and how to modify a standard regression model in
the presence of autocorrelation.

Examining Patterns of Autocorrelation
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As I explain in Chapter 6, most of the CLRM assumptions
that allow econometricians to prove the desirable properties
of the OLS estimators (the Gauss-Markov theorem) directly
involve characteristics of the error term. One of the CLRM
assumptions deals with the relationship between values of the
error term. Specifically, the CLRM assumes there’s no
autocorrelation. No autocorrelation refers to a situation in
which no identifiable relationship exists between the values of
the error term. Econometricians express no autocorrelation as
Cov(εt, εs) = 0 or Corr(εt, εs) = 0 for all t ≠ s.

Figure 12-1 shows the regression of a model satisfying the
CLRM assumption of no autocorrelation. As you can see,
when the error term exhibits no autocorrelation, the positive
and negative error values are random.

Figure 12-1: A model with no auto-correlation.

When autocorrelation does occur, it takes either positive or
negative form. Of course, autocorrelation can be incorrectly
identified as well. The following sections explain how to
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distinguish between positive and negative correlation as well
as how to avoid falsely stating that autocorrelation exists.

Positive versus negative autocorrelation

If autocorrelation is present, positive autocorrelation is the
most likely outcome. Positive autocorrelation occurs when an
error of a given sign tends to be followed by an error of the
same sign. For example, positive errors are usually followed
by positive errors, and negative errors are usually followed by
negative errors.

Positive autocorrelation is expressed as Corr(εt, εs)
> 0 for all t ≠ s.

The positive autocorrelation depicted in Figure 12-2 is only
one among several possible patterns. An error term with a
sequencing of positive and negative error values usually
indicates positive autocorrelation. Sequencing refers to a
situation where most positive errors are followed or preceded
by additional positive errors or when negative errors are
followed or preceded by other negative errors.

Although unlikely, negative autocorrelation is also possible.
Negative autocorrelation occurs when an error of a given sign
tends to be followed by an error of the opposite sign. For
instance, positive errors are usually followed by negative
errors and negative errors are usually followed by positive
errors.
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Figure 12-2: A model with positive auto-correlation.

Negative autocorrelation is expressed as Corr(εt, εs)
< 0 for all t ≠ s.

Figure 12-3 illustrates the typical pattern of negative
autocorrelation. An error term with a switching of positive
and negative error values usually indicates negative
autocorrelation. A switching pattern is the opposite of
sequencing, so most positive errors tend to be followed or
preceded by negative errors and vice versa.

370



Figure 12-3: A model with negative auto-correlation.

Whether you have positive or negative
autocorrelation, in the presence of autocorrelation, the OLS
estimators may not be efficient (that is, they may not achieve
the smallest variance). In addition, the estimated standard
errors of the coefficients are biased, which results in
unreliable hypothesis tests (t-statistics). The OLS estimates,
however, remain unbiased.

Misspecification and autocorrelation

When you’re drawing conclusions about
autocorrelation using the error pattern, all other CLRM
assumptions must hold, especially the assumption that the
model is correctly specified. If a model isn’t correctly
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specified, you may mistakenly identify the model as suffering
from autocorrelation.

To see what I mean, take a look at Figure 12-4, which
illustrates a scenario where the model has been
inappropriately specified as linear when the relationship is
nonlinear. The misspecification shown here would end up
producing an error pattern that resembles positive
autocorrelation.

Figure 12-4: A misspecified model can have a residual
pattern that gives the appearance of autocorrelation.

I advise you to perform misspecification checks
(like the ones covered in Chapter 8) if there’s evidence of
autocorrelation and you’re uncertain about the accuracy of the
specification. Misspecification is a more serious issue than
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autocorrelation because you can’t prove the OLS estimators
to be unbiased if the model isn’t correctly specified.

Illustrating the Effect of Autoregressive Errors

You tend to encounter autocorrelated errors in time-series
models where the goal is to describe the path of a variable Y
in terms of contemporaneous (and/or lagged) factors X. A
time-series model has the form

where εt represents a random shock that occurs at time t. It’s
entirely plausible that individuals (or firms, or households, or
what have you) don’t react to that shock completely in the
period in which it occurs. In this case, the error term is
correlated such that Corr(εt, εs) ≠ 0.

Knowledge that the error term is correlated is too
general to be of any use. In order to determine the precise
consequences of autocorrelation, a more specific pattern to
the autocorrelation must be assumed. Typically,
autocorrelation is assumed to be represented by a first-order
autoregression; also known as an AR(1). In general, an
autoregressive process occurs any time the value for a
variable in one period can be modeled as a function of values
of the same variable in previous periods. In the specific case
of autocorrelation, the random variable displaying this
characteristic is the error term.
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In an AR(1), the model has an
error term of the form

where ρ represents the relationship between the error terms in
period t and t – 1 and ut is a random error that satisfies the
CLRM assumptions; namely , ,
and for all t ≠ s. This equation also assumes that
–1 < ρ < 1, which is known as the stationarity assumption (I
explain the importance of this assumption in the next section).
If ρ = 0, there’s no autocorrelation and the original model
satisfies the CLRM assumption.

Autocorrelation processes can be more elaborate
than an AR(1); for example, an AR(2), AR(3), or AR(4) is
possible with quarterly time series, and an AR(12) can be
observed with monthly data. The number inside the
parentheses represents the number of lags of the error term
that are correlated with the current value. These patterns,
however, are far less common than an AR(1) and don’t
change the fundamental point that autocorrelated errors cause
bias in the standard errors and t-statistics.

You can prove the zero conditional mean for an
AR(1) error by repetitive substitution into as
follows:
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By continuing to substitute the autoregressive process and
organizing the right-hand side in ascending order of the
power of u, you obtain

Since E(ut) = 0, then E(εt) = 0.

The variance of an AR(1) error depends on the
relationship between the error in period t and the error in
period t – 1. OLS doesn’t appropriately account for this, so
the resulting standard errors will be biased.

After repetitive substitution, you can express the variance
properties of an AR(1) error term as

The stationarity assumption ( ) is necessary to
constrain the variance from becoming an infinite value.
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The stationary assumption implies that
, because ρs → 0 as s → ∞. Using the

result that allows you to form the
following simple expression for the variance of εt:

Using the CLRM assumptions for ut allows you to reduce the
variance of εt to

OLS assumes no autocorrelation; that is, ρ = 0 in

the expression . Consequently, in the presence of
autocorrelation, the estimated variances and standard errors
from OLS are underestimated.

Analyzing Residuals to Test for Autocorrelation

Serial correlation in the error term (autocorrelation) is a
common problem for OLS regression estimation, especially
with time-series and panel data. However, you usually have
no way of knowing in advance if it’s going to be present, and
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theory doesn’t usually help you anticipate its presence.
Consequently, you have to inspect your residuals to determine
if they’re characterized by autocorrelation. You can either
inspect your residuals visually or conduct one of three special
tests, which I explain in the following sections.

Taking the visual route: Graphical inspection of residuals

Looking over your residuals visually is an easy,
informal way of checking for autocorrelation, but it should
only be used as a complement, and not a substitute, for formal
statistical tests of autocorrelation. Graphical examinations of
residuals don’t provide conclusive evidence of the existence
or nonexistence of autocorrelation. If you truly suspect
autocorrelation, consider conducting one of the more formal
statistical tests covered in the following three sections.

Using graphs for an examination of autocorrelation
requires that you retain your OLS residuals and sort the data
chronologically. Then you construct a scatter diagram, with
the variable capturing your units of time on the horizontal
axis and the residual values from your OLS regression along
the vertical axis.

Figure 12-5a illustrates the typical pattern of the residuals if
the error term isn’t plagued by autocorrelation, Figure 12-5b
exhibits the potential existence of positive autocorrelation,
and Figure 12-5c displays negative autocorrelation.
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Using the normal distribution to identify residual sequences:
The run test

The run test, also known as the Geary test, uses the sequences
of positive and negative residuals to test the hypothesis of no
autocorrelation. You want to use the run test if you’re
uncertain about the nature of the autoregressive process,
because no assumptions about the number of lags or fixed
parameters (ρ values) describing the autocorrelation are
necessary to perform the test.
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Figure 12-5: Residuals displaying a) no autocorrelation, b)
positive auto-correlation, and c) negative auto-correlation.
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A run is defined as a sequence of positive or
negative residuals. The hypothesis of no autocorrelation isn’t
sustainable if the residuals have too many or too few runs.

The most common version of the test assumes that runs are
distributed normally. If the assumption of no autocorrelation
is sustainable, with 95 percent confidence, then the number of
runs should be between

μr ± 1.96σr

where μr is the expected number of runs and σr is the standard
deviation. These values are calculated by

and

where r is the number of observed runs (sequences of
residuals with one given sign, positive or negative), T1 is the
number of positive residuals, T2 is the number of negative
residuals, and T is the total number of observations.

To put the run test to work, suppose you have a dataset with
32 observations sorted chronologically and, after estimating
your model using OLS, the signs of the residuals from the
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first to the last observation are as follows (note that each run
is enclosed in parentheses):

[(– – – – – – – –)(+ + + + + + + + + + + + +)(–)(+)(– – – – – –
– – –)]

So you have T = 32, T1 = 14, T2 = 18, and r = 5. Using that
information, you can calculate

and

The 95 percent confidence interval is 16.75 ± (1.96)(2.74),
which implies that you can expect the number of runs to be
somewhere between 11 and 22. Because the number of runs
observed (r = 5) is outside the interval [11, 22], it’s unlikely
to be a random pattern and the hypothesis of no
autocorrelation is rejected. More specifically, in this example,
the number of observed runs is less than the lower bound of
the confidence interval, so there’s evidence of positive
autocorrelation.

If the number of observed runs is below the
expected interval, it’s evidence of positive autocorrelation.
On the other hand, if the number of runs exceeds the upper
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bound of the expected interval, it provides evidence of
negative autocorrelation.

In Figure 12-6, I illustrate the step-by-step process
of performing a run test in STATA, using yearly sales and
inventory data from 1950 to 1991. Prior to performing any
time-series operation, I specify which variable captures the
time component using the “tsset” command. (Doing so keeps
the data organized internally and allows me to perform
operations that rely on the order of the data.)

The results in Figure 12-6 place the 95 percent confidence
interval for the number of runs in between 16 and 26. Because
I have only 11 runs (r = 11), the null hypothesis of no
autocorrelation is rejected in favor of positive autocorrelation
because 11 is less than the lower limit of 16 here. The
calculated Z-statistic is less than –1.96, so it’s consistent with
the confidence interval result.
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Figure 12-6: STATA output with a run test for
auto-correlation.

The strength of the run test is that it doesn’t impose
restrictions on the process generating autocorrelation; AR(1),
AR(2), and so on are all possible. This strength, however, is
also a weakness. Detection of autocorrelation without any
indication of the process doesn’t provide any guidance to
correct the problem.

Detecting autocorrelation of an AR(1) process: The
Durbin-Watson test
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The Durbin-Watson (DW) test begins by assuming that if
autocorrelation is present, then it can be described by an
AR(1) process. Consequently, you use the DW test if the
autoregressive process is such that the value of the error in
period t depends on its value in period t – 1.

In a model such as , an
AR(1) error term is described by . The actual
value of ρ isn’t known, so the DW test uses the estimated
correlation between the residual in period t and the residual in
period t – 1 to test for autocorrelation. The value produced by
the DW test is called a d statistic and is calculated as follows:

where T represents the last observation in the time series.

Unlike other statistical tests (Z, t, χ2, or F), the DW test has no
unique critical value defining the point at which you reject the
null hypothesis of no autocorrelation. However, it does have a
zone of indecision defined by a lower bound (dL) and upper
bound (du) that depend on the number of observations in the
sample and the number of estimated coefficients (p + 1) in the
original model. Figure 12-7 illustrates how you can use the
calculated d statistic to draw conclusions about
autocorrelation.
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Figure 12-7: Graphical depiction of Durbin-Watson
autocorrelation test.

The closer d is to 2, the stronger the evidence of no
autocorrelation. However, the closer d is to 0, the more likely
it is that no autocorrelation is rejected in favor of positive
autocorrelation. If d is closer to 4, then no autocorrelation is
rejected in favor of negative autocorrelation.

Imagine you have some yearly sales and inventory
data from 1950 to 1991 that you want to analyze in STATA
by using the DW d test. (Remember to use the “tsset”
command to help you keep the data organized.) The d statistic
of 1.4 in Figure 12-8 must be compared to the dL and dU or 4
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– dU and 4 – dL values. Using the DW d-statistic table in the
appendix, where the number of coefficients is 2 and the
number of observations is 42, you can see that the
approximate values for dL and dU are 1.391 and 1.600. This
implies that the calculated d-statistic (from STATA output d
= 1.37) rejects no autocorrelation in favor of positive
autocorrelation, but it’s on the border of the indecision zone.

Meet the AR(1) autocorrelation detector
extraordinaire: The DW d statistic

In order to show why the DW d statistic is reasonable for
detecting AR(1) autocorrelation, take the formula for the
d statistic and expand the equation to

If you focus on the last term, you can see that it’s the
ratio of the covariance to the variance. If you work with
the covariance term, you can redefine the numerator as
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The variance of ε is

Consequently, by substituting this into the last term with
the appropriate sample estimates and reducing the first
two terms, you can rewrite the d statistic as

This approximation holds because the first two terms
differ from 1 through the exclusion of and from the
first and second numerator summations, respectively. If
there’s no autocorrelation, and d ≈ 2.
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Figure 12-8: STATA time-series OLS output followed by the
calculation of the Durbin-Watson d statistic.

The DW d-statistic is the most popular test for
autocorrelation, but it’s limited to identifying AR(1)
autocorrelation. It’s a good initial test, but additional testing
may be required to rule out other forms of autocorrelation.
Furthermore, a d-statistic that ends up in the indecision zone
requires an alternative test to achieve a more conclusive
result.

Detecting autocorrelation of an AR(q) process: The
Breusch-Godfrey test

The Breusch-Godfrey (BG) test begins by assuming that if
autocorrelation is present, then it can be described by an
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AR(q) process. You want to use a BG test if the
autoregressive process is such that the value of the error in
period t depends on its value in period t – 1, through t – q,
where q is some number greater than or equal to 1 and less
than the total number of periods in your data (a special case of
this test with q = 1 is known as Durbin’s alternative statistic).

In a model such as ,
AR(q) autocorrelation is described by

, where 1 ≤ q < T. The BG test
uses the estimated correlation between the residual in period t
with the residuals in periods t – 1 through t – q to test for
autocorrelation.

Generally, the BG test is based on the estimation of
.

You can perform a BG test by following these steps:

1. Estimate the model using
OLS.

2. Obtain the residual values, , after estimating your
model.

3. Estimate the auxiliary regression
using

OLS.
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4. Retain the R-squared value, , from this regression.

5. Calculate the F-statistic for joint significance of , , . .
. , and or the chi-squared statistic with q
degrees of freedom.

If the F or chi-squared test statistics are significant, then you
have evidence of autocorrelation. If not, you fail to reject the
null hypothesis of no autocorrelation, which is

.

Figure 12-9 illustrates the step-by-step process of
performing a BG test in STATA using yearly sales and
inventory data from 1950 to 1991. The results in Figure 12-11
show the results of my BG test for AR(1) and AR(2)
autocorrelation. Any autoregressive order can be tested using
the lags option and each is tested separately. In this case, the
outcome rejects no autocorrelation in favor of an AR(1) but
not an AR(2).
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Figure 12-9: STATA time-series OLS output and the
Breusch-Godfrey (BG) test.

Remedying Harmful Autocorrelation

After you determine that autocorrelation is likely, you need to
modify the estimation of your econometric model to obtain
accurate results. The two most common solutions to
autocorrelation are feasible generalized least squares (FGLS)
and serial correlation robust standard errors.

Feasible generalized least squares (FGLS)
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FGLS estimation has several names, depending on the precise
method used to modify the estimation of the econometric
model. The two FGLS techniques used to address AR(1)
autocorrelation are:

The Cochrane-Orcutt (CO) transformation

The Prais-Winsten (PW) transformation

For other forms of FGLS estimation used to address
heteroskedasticity, see Chapter 11.

The CO and PW techniques transform the original
model with autocorrelation into one without autocorrelation.
So the goal of the CO and PW transformations is to make the
error term in the original econometric model uncorrelated.
First, you assume that the autocorrelation is determined by an
AR(1) process. Then you use knowledge of this relationship
to perform a quasi-differencing that results in an uncorrelated
error term. Quasi-differencing subtracts the previous value of
each variable scaled by the autocorrelation parameter, ρ (as
opposed to differencing, discussed in Chapter 17, where the
subtraction merely differences the previous from the current
value).

If the proposed AR(1) model of autocorrelation,
, isn’t correct, then you have no guarantee of
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getting more accurate standard errors with FGLS than OLS.
Here’s how to apply either the CO or PW technique:

1. Estimate your original model,
, and obtain the residuals .

2. Use the residuals to estimate by performing one of the
following calculations:

•

This calculation can be used in large samples but may have
significant error in smaller samples.

•

This calculation, known as Thiel’s estimator, can be used
with smaller samples.

• Estimate and obtain from the regression.

This method is the most common for estimating ρ but is
recommended only with larger samples.

In practice, knowing the exact value of ρ is
impossible. In applied settings, you use the estimated value
for ρ (that is, ) to transform the model.
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3. Estimate the quasi-differenced CO or PW regression
using in place of ρ.

Now that you know the basic steps, try applying them to first
find the CO transformation. Suppose your original model
takes the form

and that the error term is defined by

where ut satisfies the CLRM assumptions such that
, , and . Notice

that the model for Y violates the assumption of no
autocorrelation because the errors in period t and t – 1 are
correlated.

If the model for Y holds true in period t, it should also hold in
t – 1, so

Multiply both sides of Yt – 1 by ρ and subtract from the
original model to obtain the quasi-differenced model:

Because , you can substitute for εt and get
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The β*s are the CO estimators. , so this model satisfies
all of the CLRM assumptions. Notice, however, that one
observation is lost because the first observation doesn’t have
an antecedent.

The PW transformation maintains the CO structure with the
exception of the first observation. In order to avoid the loss of
the first observation, you can transform the Y, X, and ε values
as follows:

You can show that the error term in the first period also
satisfies the CLRM assumptions, because

and
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In large samples, the difference between the CO and PW
estimates is usually small. In small samples, however, the
difference between CO and PW estimates can be significant.

Most econometrics software programs allow you to
perform FGLS to correct for autocorrelation by utilizing a
specialized command. In STATA, you specify which variable
captures the time component by using the “tsset” command in
order to keep the data internally organized so you can perform
operations that rely on the order of the data. Figure 12-10a
illustrates how to use STATA to estimate a CO
transformation using yearly sales and inventory data; Figure
12-10b shows the PW results. (Note: The PW is the standard
AR(1) transformation in STATA, but the CO transformation
can be utilized as an option to the “prais” command.) The CO
and PW results are similar but not identical. The difference is
due to the use of all 42 observations in the PW estimation
compared to the loss of the first observation (T = 41) in the
CO estimation. Both results can be compared to the OLS
results (in Figure 12-9), which underestimate the standard
errors and lead to larger t-statistics and higher levels of
statistical significance.

Serial correlation robust standard errors

Estimating the model using OLS and adjusting the standard
errors for autocorrelation has become more popular than other
correction methods. There are two reasons for this: (1) The
serial correlation robust standard errors can adjust the results
in the presence of a basic AR(1) process or a more complex
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AR(q) process, and (2) only the biased portion of the results
(the standard errors) are adjusted, while the unbiased
estimates (the coefficients) are untouched, so no model
transformation is required.
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Figure 12-10: a) STATA time-series Cochrane-Orcutt (CO)
FGLS estimates and b) STATA time-series Prais-Winsten
(PW) FGLS estimates.

Adjusting the OLS standard errors for
autocorrelation produces serial correlation robust standard
errors. These are also referred to as Newey-West (NW)
standard errors. The strength of this method is that it’s able
to simultaneously deal with higher-order autocorrelation
(AR(q)) and heteroskedasticity.

The variances and covariances of the errors can be
shown in a matrix known as the error covariance matrix. This
can be expressed as

The diagonals represent the error variance, and the
off-diagonals are the covariance values. Under the assumption
of homoskedasticity, the diagonals have the same value; if
there’s no autocorrelation, then the off-diagonals are all zero.

The serial correlation robust standard errors can be calculated
by applying the following steps:
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1. Estimate your original model
and obtain the residuals: .

2. Estimate the auxiliary regression
and retain the residuals: .

3. Find the intermediate adjustment factor, , and
decide how much serial correlation (the number of lags)
you’re going to allow.

A Breusch-Godfrey test (see the earlier related section) can be
useful in making this determination.

4. Obtain the error variance adjustment factor,

, where g represents
the number of lags determined in

Step 3.

5. Calculate the serial correlation robust standard error.

It’s also known as the
heteroskedasticity-autocorrelation-corrected (HAC) standard
error because the calculation simultaneously adjusts the
standard error for heteroskedasticity (covered in Chapter 11)
and autocorrelation. For variable X1,
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6. Repeat Steps 2 through 5 for independent variables X2
through Xp.

Fortunately, most econometrics software programs
allow you to obtain serial correlation robust standard errors
with a specialized command that instantaneously performs all
the steps. The command that achieves this function in STATA
is the “tsset” command combined with the “newey” option of
“regress”. In Figure 12-11, I illustrate how you estimate the
OLS coefficients with the serial correlation robust standard
errors using yearly sales and inventory data. The figure shows
the standard OLS results along with the robust standard
errors. Notice that both sets of results have identical
coefficients. However, the serial correlation robust (NW)
standard errors change the t-statistics, confidence intervals,
and p-values for the coefficients.

401



Figure 12-11: Using STATA to estimate a time-series model
with serial correlation robust (Newey-West) standard errors.
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Part V

Discrete and Restricted Dependent Variables in Econometrics

Check out www.dummies.com/extras/
econometrics for a refresher of how discrete and
restricted dependent variables work before heading into your
next exam.
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In this part . . .

Model economic outcomes that are qualitative or have
limited values to address questions such as “What
distinguishes a job applicant who gets hired from one who
doesn’t?”

Discover how to use maximum likelihood (ML)
estimation as an alternative to the OLS technique so you can
choose values for your estimated parameter(s) that maximize
the probability of observing the values contained in your data
sample.

Deal with limited dependent variables, namely censored
dependent variables and truncated dependent variables, to
prevent one or more of the traditional regression model
assumptions from failing.

Find out how to implement econometric techniques to
modify traditional regression analysis in the presence of
limited dependent variables with the help of econometric
software.
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Chapter 13

Qualitative Dependent Variables

In This Chapter

Modeling qualitative outcomes

Estimating a linear probability model

Revealing the limitations of the linear probability model

Estimating and interpreting probit and logit models

What distinguishes a job applicant who gets hired from one
who doesn’t? What influences whether an individual’s loan
application gets approved or rejected? How does a commuter
decide between using a car and using some alternative form
of transportation to reach work? These questions all concern
qualitative outcomes that either occur or do not occur. The
outcomes are dichotomous (meaning only two outcomes are
possible) and not continuous or normally distributed. For this
reason, these models are also known as dummy dependent
variable models. If you want to model qualitative outcomes of
this nature and use regression analysis, you can use traditional
ordinary least squares (OLS), but you’ll likely need special
econometric techniques to properly model the outcome of
interest.

In this chapter, I show you the econometric techniques most
commonly used when the dependent variable is qualitative.
These techniques can be quantitatively burdensome and
practically impossible without a computer, so I focus on
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explaining the structure of the models and interpretation of
the computer output.

Modeling Discrete Outcomes with the Linear Probability
Model (LPM)

If your outcome of interest is dichotomous (can take only two
possible outcomes rather than an infinite number of
possibilities), then you can create a dummy variable to
capture the qualitative characteristic. Using the ordinary least
squares (OLS) technique to estimate a model with a dummy
dependent variable is known as creating a linear probability
model, or LPM.

In Figure 13-1, I illustrate the concept of fitting a line with a
qualitative dependent variable. Fitting the relationship
between Y and X when Y is a dummy variable produces the
conditional probability that Y = 1. I tell you about conditional
probabilities and how to interpret the results of estimating
LPM with OLS in the following sections.
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Figure 13-1: A linear relationship with a qualitative (or
dummy) dependent variable.

Estimating LPM with OLS

A basic LPM can be expressed as

Yi = β0 + β1Xi + εi

where Y, the dependent variable, is a dummy variable that is
equal to 1 if a particular outcome is observed and 0 otherwise
(in Chapter 9 I discuss how dummy variables can be defined,
but that chapter focuses on their use as independent
variables). Additionally, X is the independent variable, and ε
represents that random error term. Without the error term, the
left-hand side of a linear model is the conditional mean.
However, because the conditional mean in an LPM can only
take one of two possible values, the resulting binomial
probability distribution is shown in Table 13-1 (notice that
summing the probabilities of each outcome is equal to 1, as 1
– Pi + Pi = 1).

Table 13-1 Binomial Probability Distribution for the
Dependent Variable

Y f(Y)

0 1 – Pi
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1 Pi

Using the possible values for the dependent variable and the
probabilities that they occur gives you the expected value of Y
as follows:

E(Y) = 0(1 – Pi) + 1(Pi) = Pi = Pr(Y = 1)

The unconditional mean of the dependent variable is the
fraction of times (or probability) that the outcome is observed.

If the dependent variable is assumed to be a
function of X such that , then the
represents the conditional probability of observing the
outcome given the value of the independent variable; in other
words, .

In Figure 13-2, I illustrate how the regression line can be used
to obtain the conditional probability that the outcome of
interest is observed.
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Figure 13-2: The conditional probabilities of observing an
outcome using the function from the LPM.

With sample data, you can estimate the function using OLS.
The predicted values of the dependent variable from the
regression are estimates of the conditional probabilities

.

Time for an example that uses some real-life data.
Say you have data from 20 Major League Baseball (MLB)
players to estimate an LPM. The dependent variable captures
whether a player was released or retained by his team at the
end of the season. The dependent variable Y (plexit) is 1 if the
player was released and 0 if the player was retained. The
independent variable X is the player’s three-year slugging
average (slg_3_avg). Figure 13-3 shows the STATA results.
Notice that the results in Figure 13-3 are obtained by using
the standard “regress” command in STATA. In other words,
the OLS technique is used with the dependent variable
representing a qualitative outcome measured with a dummy
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variable rather than a continuous quantitative variable. The
same command that’s used to obtain the predicted values of
the dependent variable (“predict”) can be used to calculate the
predicted probabilities.
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Figure 13-3: STATA estimation of a linear probability model
(LPM) with the predicted probabilities.
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Interpreting your results

In the LPM, like any model estimated using OLS, the
regression coefficients represent the effect of the independent
variable(s) on the dependent variable.

The terms in an LPM estimate the impact on the
predicted probability for a unit-change in the independent
variable(s). The predicted probability is the chance of
observing the outcome defined with a value of 1 in the
dichotomous dependent variable.

Using the results in Figure 13-3, you can write the estimated
LPM equation as . This equation implies that if
a player’s slugging percentage increases by 0.1, the
probability of his being fired by his team decreases by 0.31
(3.1 × 0.1 = 0.31 or 31 percent).

Although OLS estimation always produces the
typical R-squared measure of fit, its interpretation is less
meaningful when all the values of the dependent variable are
at 0 or 1. The R-squared value may be low even if the model
predicts very accurate probabilities. You can obtain more
appropriate measures of fit for an LPM by comparing the
model’s predicted probabilities to the observed Y values. In
the case of an LPM (or any model where the dependent
variable is dichotomous), more appropriate measures of fit
capture the fraction of times the model predicts accurately.
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Before you can calculate a measure of fit, you first
need to determine what can be considered an accurate
prediction from the model. Then you need a rule for
aggregating the accurate predictions to provide an overall
goodness-of-fit measure.

Because no measure of fit is universally accepted, I can best
demonstrate these steps using the results from the model
estimated in Figure 13-3 to calculate the percentage
accurately predicted using four different methodologies.
Figure 13-4 lists the actual Y values and the predicted
probabilities from estimating the LPM illustrated in Figure
13-3.
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Figure 13-4: The observed Y values and LPM predicted
probabilities.

Using the LPM predictions in Figure 13-4, you can estimate
the following four measures of fit, which are the four most
common approaches. How they’re applied varies, but
typically (when working independently on a project or
research paper) you should report at least two of these
measures.

If you use these two criteria:

• Accurate prediction defined as (a) and Y = 1 or (b)
and Y = 0 (that is, using a simple 50-50 chance as the

cutoff)

• Accurate predictions aggregated by calculating the total
number of accurate predictions as a percentage of the total
number of observations

Then you obtain . Note: From Figure 13-4,
five observations satisfy the definition of an accurate
prediction for category (a), and 11 observations are classified
into category (b).

Using these criteria:

• Accurate prediction defined as (a) and Y = 1 or
(b) and Y = 0 (that is, using the average value of
the dependent variable, in this case 0.4, as the cutoff point)
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• Accurate predictions aggregated by calculating the total
number of accurate predictions as a percentage of the total
number of observations

You obtain . Note: From Figure 13-4, seven
observations satisfy the definition of an accurate prediction
for category (a), and eight observations are classified into
category (b).

Using these criteria:

• Accurate prediction defined as and Y = 1 or
and Y = 0 (that is, using a simple 50-50 chance as the cutoff)

• Accurate predictions aggregated by calculating the percent
of accurate predictions in each group (for Y = 0 and Y = 1)
and weighting the percent of observations in each group

You obtain . Note: From Figure
13-4, five out of eight observations satisfy the definition of an
accurate prediction for category (a), but they’re given a 40
percent weight because Y = 1 for 40 percent of the total
observations. Similarly, 11 out of 12 observations are
classified into category (b), but they’re given a 60 percent
weight because Y = 0 for 60 percent of the total observations.

Using these criteria:

• Accurate prediction defined as and Y = 1 or
and Y = 0 (that is, using the average value of the

dependent variable, in this case 0.4, as the cutoff point)
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• Accurate predictions aggregated by calculating the percent
of accurate predictions in each group (for Y = 0 and Y = 1)
and weighting the percent of observations in each group

You obtain . Note: From Figure
13-4, seven out of eight observations satisfy the definition of
an accurate prediction for category (a), but they’re given a 40
percent weight because Y = 1 for 40 percent of the total
observations. Similarly, 8 out of 12 observations are classified
into category (b), but these are given a 60 percent weight
because Y = 0 for 60 percent of the total observations.

All four of these methods of obtaining the fraction of accurate
predictions provide a reasonable alternative to the R-squared
value with qualitative dependent variable models.

Presenting the Three Main LPM Problems

LPMs aren’t perfect. Three specific problems can arise:

Non-normality of the error term

Heteroskedastic errors

Potentially nonsensical predictions

The following sections describe how these problems arise —
as well as their consequences — in detail.

Non-normality of the error term
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The assumption that the error is normally distributed is
critical for performing hypothesis tests after estimating your
econometric model. (I discuss the normality assumption and
its role in OLS estimation in Chapter 7).

The error term of an LPM has a binomial
distribution instead of a normal distribution. It implies that the
traditional t-tests for individual significance and F-tests for
overall significance are invalid.

As you can see in Figure 13-5, the error term in an LPM has
one of two possible values for a given X value. One possible
value for the error (if Y = 1) is given by A, and the other
possible value for the error (if Y = 0) is given by B.
Consequently, it’s impossible for the error term to have a
normal distribution.
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Figure 13-5: The error term in a linear probability model
(LPM).

Heteroskedasticity

The classical linear regression model (CLRM) assumes that
the error term is homoskedastic. The assumption of
homoskedasticity is required to prove that the OLS estimators
are efficient (or best). The proof that OLS estimators are
efficient is an important component of the Gauss-Markov
theorem (which I show in Chapter 6). The presence of
heteroskedasticity can cause the Gauss-Markov theorem to be
violated and lead to other undesirable characteristics for the
OLS estimators.

The error term in an LPM is heteroskedastic
because the variance isn’t constant. Instead, the variance of an
LPM error term depends on the value of the independent
variable(s).

Using the structure of the LPM, I can characterize
the variance of its error term as follows
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Because the variance of the error depends on the value of X, it
exhibits heteroskedasticity rather than homoskedasticity. (For
more on the problems with heteroskedasticity, see Chapter
11.)

Unbounded predicted probabilities

The most basic probability law states that the
probability of an event occurring must be contained within
the interval [0,1]. But the nature of an LPM is such that it
doesn’t ensure this fundamental law of probability is satisfied.
Although most of the predicted probabilities from an LPM
have sensible values (between 0 and 1), some predicted
probabilities may have nonsensical values that are less than 0
or greater than 1.

To see what I mean, take a look at Figure 13-6 and focus your
attention on the segments of the regression line where the
conditional probability is greater than 1 or less than 0. When
the dependent variable is continuous, you don’t have to worry
about unbounded values for the conditional means. However,
dichotomous variables are problematic because the
conditional means represent conditional probabilities.
Interpreting probabilities that aren’t bounded by 0 and 1 is
difficult.
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Figure 13-6: An LPM doesn’t constrain the conditional
probabilities to be within 0 and 1.

You can see an example of this problem with actual data in
Figure 13-4. Most of the estimated probabilities from my
LPM estimation are contained within the [0,1] interval, but
the predicted probability for the seventh observation is
negative. Unfortunately, nothing in the estimation of an LPM
ensures that all the predicted probabilities stay within
reasonable values.

Specifying Appropriate Nonlinear Functions: The Probit and
Logit Models

If your outcome of interest is qualitative, you use a dummy
dependent variable and estimate the probability that the
outcome (Y = 1) occurs using your econometric model.
Although OLS can be used to estimate a model with a
qualitative dependent variable, doing so would result in an
error term that’s heteroskedastic and isn’t normally
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distributed. (See Chapter 7 for the scoop on the normality
assumption and Chapter 11 for information on
heteroskedasticity.)

The most obvious problem with estimating a
dummy dependent variable model using OLS is that the
predicted probabilities aren’t guaranteed to be within the [0,1]
interval. OLS can’t be modified to fully address this issue
because nonlinearity in parameters is required in order to
guarantee that all predicted probabilities have sensible values.
Consequently, an alternative specification must be used.
Econometricians choose either the probit or the logit function.

With a probit or logit function, the conditional probabilities
are nonlinearly related to the independent variable(s).
Additionally, both functions have the characteristic of
approaching 0 and 1 gradually (asymptotically), so the
predicted probabilities are always sensible.

In Figure 13-7, I illustrate the conditional probabilities from
an OLS (also known as the linear probability model LPM), a
probit, and a logit model.
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Figure 13-7: A typical probit and logit model of conditional
probabilities compared to a linear probability model (LPM).

Working from the standard normal CDF: The probit model

The probit model is based on the standard normal cumulative
density function (CDF), which is defined as

where Z is a standardized normal variable (if you need to
review standard normal variables, the topic is discussed in
Chapter 3) and e is the base of the natural log (the value
2.71828 . . .).

In a probit model, the standard normal CDF replaces the
linear function, so you estimate
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The β terms can’t be estimated using OLS, so you need to use
a technique known as maximum likelihood (ML). I explain the
ML technique in the later “Using Maximum Likelihood (ML)
Estimation” section.

For any given X, the probit model provides the Z
value for the observation. The standard normal PDF or CDF
can then be used to obtain the probability that Y = 1 for that
observation.

Figure 13-8 shows how to go about finding the probability for
any given observation.

Figure 13-8: The standard normal probability density
function (PDF) and cumulative density function (CDF) in a
probit model.

After estimating a probit model, most econometric software
can calculate the predicted probabilities for all sample
observations. Head to the later section “Interpreting Probit
and Logit Estimates” for more on this topic.
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Basing off of the logistic CDF: The logit model

The logit model is based on the logistic cumulative density
function (CDF), defined as

where G is a logistic random variable and e is the base of the
natural log (the value 2.71828 . . .).

The logistic distribution may be unfamiliar to you, but it’s
similar to a standard normal. However, it does have less
density within one standard deviation of the mean than a
standard normal distribution. Figure 13-9 illustrates the
difference between the standard normal and the logistic
distributions.

Figure 13-9: The logistic probability density function (PDF)
compared to the standard normal probability density function
(PDF).

In a logit model, the logistic CDF replaces the linear function
so that you estimate
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Note: You can’t use OLS to estimate the βs; instead, you have
to use the maximum likelihood (ML) technique, which I tell
you more about in the following section.

For any given X, the logit model provides the value
for the observation that can be used with the logistic CDF to
find the probability that Y = 1 for that observation.

In Figure 13-10, I illustrate how you find the probability for
any given observation.

Figure 13-10: The logistic probability density function (PDF)
and cumulative density function (CDF) in a logit model.

When you have your logit model estimated, you can use
econometric software such as STATA to calculate the
predicted probabilities for all your sample observations. I
explain how in the later “Interpreting Probit and Logit
Estimates” section.

Using Maximum Likelihood (ML) Estimation
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Probit and logit functions are both nonlinear in parameters, so
OLS can’t be used to estimate the βs. Instead, you have to use
a technique known as maximum likelihood (ML) estimation.

The objective of maximum likelihood (ML)
estimation is to choose values for the estimated parameters
(βs) that would maximize the probability of observing the Y
values in the sample with the given X values. This probability
is summarized in what is called the likelihood function. I
explain how to construct this function — and how to make it
more manageable — in the next sections.

Constructing the likelihood function

The likelihood function, which calculates the joint probability
of observing all the values of the dependent variable, assumes
that each observation is drawn randomly and independently
from the population. If the values of the dependent variable
are random and independent, then you can find the joint
probability of observing all the values simultaneously by
multiplying the individual density functions.

Assuming that each observed value of the
dependent variable is random and independent, the likelihood
function is
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where Π is the product (multiplication) operator. You can
rewrite this equation as

where P represents the probability that Y = 1, (1 – P) is the
probability that Y = 0, and F can represent that standard
normal or logistic CDF; in the probit and logit models, these
are the assumed probability distributions.

The log transformation and ML estimates

In order to make the likelihood function more manageable,
the optimization is performed using a natural log
transformation of the likelihood function. You can justify it
mathematically because log transformations are a type of
monotonic transformation. In other words, for any function
f(X) and log transformation g(X), f(X1) > f(X2) → g(X1) >
g(X2). Therefore, the optimizing solution for the likelihood
function is the same as the log likelihood function.

From the likelihood function L, using a natural log
transformation I can write the estimated log likelihood
function as

where F denotes either the standard normal CDF (for the
probit model) or the logistic CDF (for the logit model).
Finding the optimal values for the terms requires solving the
following first-order conditions
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ML estimation is computationally intense because
the first-order conditions for maximization don’t have a
simple algebraic representation. Econometric software relies
on numerical optimization by searching for the values of the
s that achieve the largest possible value of the log likelihood
function, which means that a process of iteration (a repeated
sequence of gradually improving solutions) is required to
estimate the coefficients.

The econometric software searches (uses an iterative process)
until it finds the values for all the s that simultaneously
maximize the likelihood of obtaining the observed values of
the dependent variable. I illustrate the software’s optimization
procedure for ML estimation in Figure 13-11.
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Figure 13-11: Maximum likelihood (ML) estimation
achieved with numerical optimization.

Interpreting Probit and Logit Estimates

As you may expect, the nonlinearity of the probit and logit
functions makes interpreting the results difficult.

Interpreting a probit model: In a probit model, the value
of provides the estimated Z (standard normal) value
for observation i. Sometimes the values are referred
to as probability units or probits. You can use these values to
obtain the predicted probability for each observation (I
explain how to convert these values into probabilities that you
can review in the earlier section “Working from the standard
normal CDF: The probit model”). Most econometric software
calculates all of the predicted probabilities with a single
command.

Interpreting a logit model: In a logit model, the value of
provides the estimated G (logistic) value for
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observation i. Sometimes the values are referred to
as logistic units or logits. You can use these values to obtain
the predicted probability for each observation (to see how to
convert these values into probabilities, refer to the earlier
“Basing off of the logistic CDF: The logit model” section of
this chapter). As with the probit model, most econometric
software also calculates predicted probabilities from a logit
model with a simple command.

I used data from 20 Major League Baseball (MLB)
players to estimate probit and logit models. The dependent
variable captures whether a player was released or retained by
his team at the end of the season. The dependent variable Y
(plexit) = 1 if the player was released and Y (plexit) = 0 if the
player was retained. The independent variable X is the
player’s 3-year slugging average (slg_3_avg). Figures 13-12
and 13-13 show the STATA probit and logit results,
respectively. The results in Figures 13-12 and 13-13 are
obtained by using the “probit” and “logit” commands in
STATA. The iterations in the output show how the ML
technique is searching for the coefficient estimates that can
maximize the log likelihood. You can use the “predict”
command with the p option to obtain the predicted
probabilities.
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Figure 13-12: STATA probit results and predicted
probabilities.
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Figure 13-13: STATA logit results and predicted
probabilities.

Probit and logit estimation always produces a
Pseudo R-squared measure of fit. It’s calculated by

, where lnLur is the log likelihood for the
estimated model and lnL0 is the log likelihood in the model
with only an intercept. It’s comparable to the R-squared value
in OLS regression, but other measures are usually preferred
for evaluating fit when the dependent variable is a dummy
(dichotomous).

You can obtain more appropriate measures of fit for
probit and logit models by comparing the model’s predicted
probabilities to the observed Y values. Appropriate measures
of fit typically capture the fraction of times the model
accurately predicts the outcome.

When you have to calculate a measure of fit using
the predicted probabilities, start by determining how you
define an accurate prediction from the model. Then set up a
rule for aggregating the accurate predictions to provide an
overall goodness-of-fit measure. No single measure of fit is
universally accepted, but in the earlier section “Modeling
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Discrete Outcomes with the Linear Probability Model
(LPM)” of this chapter, I use four different methodologies to
calculate the percent accurately predicted. You can apply the
same measures of fit used for the LPM to the probit and logit
models. With a qualitative dependent variable, measures of
the fraction of accurate predictions provide a reasonable
alternative to the R-squared and Pseudo R-squared values. If
you’re not sure about which method (probit or logit) to use in
a specific situation, you may want to compare these measures
of fit to make your decision. Usually, however, the decision
to go with one over the other is determined by norms in a
particular area of research.

In the sections that follow, you continue working with output
from probit and logit models. In particular, the coefficients
from these models require special attention because the
nonlinearity of the functions makes coefficient interpretation
more complex.

Probit coefficients

When you estimate a probit function, keep in mind that the
model is nonlinear and the coefficients can’t be interpreted as
partial-slope coefficients.

The coefficient(s) produced by estimating a probit
model provide the change in the Z (standard normal) value for
a unit change in the independent variable(s). Because the
probit is derived from the standard normal distribution (a
nonlinear function), you need calculus in order to obtain the
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impact of the independent variable(s) on the probability of
observing the outcome. These influences are known as
marginal effects.

You can see how marginal effects are calculated by
looking at the probit specification. The standard probit model
has the following form:

where F represents the standard normal CDF. Using calculus
to obtain the slope (change in Y for a change in X), you get

where f is the standard normal PDF.

You can estimate the marginal effect without
calculus by using the estimated function and changing the
value of X by unit. For example, suppose the estimated probit
function is and X = 10. This becomes
F(0.8), so using the standard normal CDF, the predicted
probability at Z = 0.8 is 0.79. If you increase the value of X by
one unit to X = 11, the predicted probability becomes F(1.2) =
0.88. Therefore, the estimated marginal effect is 0.88 – 0.79 =
0.09.
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Even better than that trick is the fact that most
econometric software that’s equipped to estimate probit
models can also calculate the marginal effects, as you can see
in Figure 13-14, which uses the probit model from Figure
13-12 to illustrate how to obtain precise marginal effects. The
results in Figure 13-14 are obtained by using the “probit”
command in STATA followed by the “mfx” command. In
other words, STATA uses the estimated coefficients and
performs the calculus required to obtain the marginal effects.
The results imply that if a player’s slugging percentage
increases by 0.1, the probability of that player being fired by
his team decreases by 0.37 (3.7 × 0.1 = 0.37).

Figure 13-14: STATA probit results with estimated marginal
effects.
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Keep in mind that estimating marginal effects using
discrete unit changes is only an estimation and not perfectly
precise. The reason for this is that the nonlinearity implies
that the marginal effects change continuously along the
estimated function.

Logit coefficients

You shouldn’t interpret coefficients from your logit
estimation as partial slope coefficients, because the model is
nonlinear.

The coefficient(s) produced by estimating a logit
model provide the change in the G (logistic) value for a unit
change in the independent variable(s). Because the logit is
derived from the logistic distribution (a nonlinear function),
you have to use calculus to figure out the impact of the
independent variable(s) on the probability of observing the
outcome (that is, the marginal effects).

By beginning with the logit specification, I can
show how the marginal effects are calculated. The standard
logit model has the following form:
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where F represents the logistic CDF. Using calculus to obtain
the slope (change in Y for a change in X), I get

where e is the base of the natural log (the value 2.71828 . . .).

To estimate the marginal effect without calculus,
use the estimated function and change the value of X by one
unit. For example, suppose the estimated logit function is

and X = 18. It becomes F(–2.1 + 0.2(18)) = F(1.5), so using
the logistic CDF, the predicted probability is

If you increase the value of X by one unit to X = 19, the
predicted probability becomes

Therefore, the estimated marginal effect is 0.85 – 0.82 = 0.03.
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Using my logit model from Figure 13-13, in Figure
13-15 I show how you obtain precise marginal effects. I got
the results in Figure 13-15 by using the “logit” command in
STATA followed by the “mfx” command. In other words,
STATA uses the estimated coefficients and performs the
calculus required to obtain the marginal effects. The results
imply that if a player’s slugging percentage increases by 0.1,
the probability of being released (fired) by his team decreases
by 0.39 (3.9 × 0.1 = 0.39).

Figure 13-15: STATA logit results with estimated marginal
effects.

Keep in mind that estimating marginal effects using
discrete unit changes is only an estimation and not perfectly
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precise. The nonlinearity implies that the marginal effects
change continuously along the estimated function.
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Chapter 14

Limited Dependent Variable Models

In This Chapter

Exploring censored and truncated variables

Understanding and dealing with selection issues

Limited dependent variables are usually quantitative but have
restricted values. You must pay particular attention to these
types of situations because missing or constrained values for
the dependent variable cause one or more traditional
regression model assumptions to fail. Here are two examples
of scenarios that result in limited dependent variables:

You want to model the labor market using wages as the
dependent variable, but only positive wages are observed,
because when the wage is too low, individuals drop out of the
labor force or the wage doesn’t meet the legal minimum
wage.

You want to model demand for basketball games using
ticket sales as the dependent variable, but sales reach a
maximum at the arena’s capacity (even if demand exceeds the
sell-out capacity).

The restricted data available for outcomes makes using
traditional regression analysis difficult. Fortunately, you can
use econometric techniques to modify traditional regression
analysis in the presence of limited dependent variables. In this
chapter, get ready to see some practical examples, find out
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how to implement the techniques using STATA, and interpret
your results.

The Nitty-Gritty of Limited Dependent Variables

Limited dependent variables arise when some minimum
threshold value must be reached before the values of the
dependent variable are observed and/or when some maximum
threshold value restricts the observed values of the dependent
variable.

A limited dependent variable causes the standard model to
become

Yi
* = β0 + β1Xi + εi

where restricted values don’t allow you to always observe Y*.
Specifically, you observe Yi

* = max(Yi
*, a) if the dependent

variable is limited by a lower threshold and/or Yi
* = min(Yi

*,
b) if the dependent variable is limited by an upper threshold.
Because the ordinary least squares (OLS) technique estimates
the model without accounting for the missing data or the
values that are at the threshold (rather than their actual
values), the resulting estimated coefficients are biased.

Situations where the dependent variable is discrete
(meaning it has a finite number of possible outcomes) or
where measurement of the dependent variable takes place
while the process is still ongoing (like the amount of time
unemployed) are also problematic for OLS estimation. A
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number of techniques (multinomial probit, multinomial logit,
ordered probit, ordered logit, Poisson, negative binomial, and
duration models) can be used for these scenarios, but
treatment of these topics is usually reserved for advanced or
graduate-level econometrics courses.

A limited dependent variable results in either a censored
sample or a truncated sample. In other words, censored and
truncated dependent variables are the two types of specific
limited dependent variables you’ll encounter.

Censored dependent variables

With a censored dependent variable, information is
lost because some of the actual values for the dependent
variable are limited to a minimum and/or maximum threshold
value.

Typical examples of censored dependent variables include

The number of hours worked in a week: Hours may be
constrained by firms wanting to avoid payment of overtime
rates even though employees may want to work more hours.

Income earned: Income can be capped in survey data to
maintain respondent confidentiality.

Sale of tickets to concerts and sporting events: Ticket
sales can be limited by stadium capacity.
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Exam scores: Exams scores may be limited to a range of
0 to 100, even though people receiving the minimum or
maximum score aren’t likely to be of exactly equal ability.

In Figure 14-1, I illustrate a situation with a censored
dependent variable. The dots represent actual and observed
values, and the asterisks represent values that would have
corresponded to the observations but aren’t actually observed.
The empty circles indicate values that are observed but
censored. Without censoring, their values would be at the *
points.

Using data where the dependent variable captures a
combination of actual values and values that are observed but
limited to a threshold (censored), you can see a violation of
the classical linear regression model (CLRM) assumption.
Specifically, the conditional mean of the error isn’t zero. In
addition, the value of the error is correlated with the value of
the independent variable.
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Figure 14-1: A regression model in the presence of a
censored dependent variable.

Truncated dependent variables

With a truncated dependent variable, information is
lost because some of the values for the variables are missing
(meaning they aren’t observed if they are above or below
some threshold). Sometimes observations included in the
sample have missing values for both the independent and
dependent variables, and in other cases only the values for the
dependent variable are missing.

A common scenario resulting in truncation is nonrandom
sample selection, when some measurements from the
population are less (or more) likely to be included in the
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sample than others. For example, researchers may be
interested in the impact of a public program and only include
individuals below the poverty line in the sample. The other
typical scenario is when individual observations are included
in a sample through self-selection, when the sample is
essentially choosing itself rather than being determined by the
researcher through randomization. For example, a dataset
may include wages earned from work, but wages will be
missing for people who have chosen to stay out of the labor
force.

In Figure 14-2, I illustrate a situation with a truncated
dependent variable. The dot indicates actual and observed
values; the asterisk represents values that would have
corresponded to the sample observations but aren’t actually
observed. Using the data where some values of the dependent
variable aren’t observed (truncated), you can see that the
conditional mean of the error isn’t zero (which violates a
CLRM assumption). In addition, the value of the error is
correlated with the value of the independent variable.
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Figure 14-2: A regression model in the presence of a
truncated dependent variable.

The primary difference between a truncated and a
censored variable is that the value of a truncated variable isn’t
observed at all. However, a value is observed for a censored
variable, but it’s suppressed for some observations at the
threshold point.

Censored and truncated dependent variables lead to
similar problems (biased coefficients), but the solution to the
problem isn’t the same in both scenarios. Properly identifying
the dependent variable as censored or truncated helps you
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determine how to modify the estimation procedure in order to
deal with the limited values of the dependent variable.

Modifying Regression Analysis for Limited Dependent
Variables

Although you can deal with limited dependent variables in
several ways depending on the nature of the data generating
process, the most common are the Tobit, truncated normal,
and Heckman selection models. I tell you all about these
models in the following sections.

Tobin’s Tobit

The Tobit model is best for when the dependent
variable is censored (I give you the specifics on censored
dependent variables in the earlier related section).

If you use OLS estimation with the observed data as if they’re
all uncensored values, you get biased coefficients. To avoid
them, the estimation procedure must properly account for the
censoring of the dependent variable. Maximum likelihood
(ML) estimation does so.

Suppose you have the following model with upper-limit
censoring (the most common type):
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In the final equation, b is the maximum (censored) value of
the dependent variable observed in the sample data. Using the
probability of censorship, estimation is accomplished with
ML rather than OLS. The log likelihood function that’s
maximized is

where F denotes the standard normal CDF and f is the
standard normal PDF (I cover the ML estimation technique in
detail in Chapter 13). The coefficients estimated using this
procedure represent the marginal effects (the impact on the
dependent variable for a unit change in the independent
variable) for the whole population. In that sense, ML
estimation achieves the same outcome as OLS estimation.
The difference, however, is that the ML technique can
accommodate complex, nonlinear functions and produce
estimates in situations where the solutions can’t be expressed
through simple algebraic formulas.

Most econometric software is equipped to estimate
Tobit models. In Figure 14-3, I use data from a sample of
workers (aged 18 – 64) to estimate how age affects the
number of hours worked in a week. The sample contains
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censored observations because, although some individuals
worked more than 40 hours in a week, 40 was the maximum
workers could report. I got the results shown in Figure 14-3
by using the “tobit” command in STATA. (You can define
the minimum and/or maximum threshold values at which the
censoring occurs by using the options “ll” or “ul”). The
bottom portion of the output (below the estimated
coefficients) shows you how many observations have
censored values.

Tobit estimation produces a likelihood ratio chi-squared
statistic. It’s analogous to the F-statistic in OLS, and it tests
the null hypothesis that the estimated model doesn’t produce
a higher likelihood than a model with only a constant term.

You can interpret the resulting coefficients from Tobit
estimation in the same manner as traditional marginal effects
from OLS; an additional year of age increases the number of
hours worked in a week by 0.299, on average.
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Figure 14-3: STATA output from estimating a Tobit model.

In Figure 14-4, I estimate the same model that I use in Figure
14-3 but with OLS rather than the Tobit technique. If you
ignore the censoring and estimate the model using OLS, the
coefficients will be biased toward finding no relationship
(smaller coefficients/effects). The p-values suggest that age is
statistically significant, but the estimated effect is much
smaller. The Tobit results (Figure 14-3) imply that an
additional year of age increases the number of hours worked
in a week by 0.299, on average. On the other hand, the OLS
results (Figure 14-4) imply that hours worked increase by
only 0.084 per week, on average.
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Figure 14-4: STATA output using OLS to estimate a model
that should be estimated with Tobit.

Truncated regression

Truncated regression applies the CLRM assumption
of normality (which I tell you all about in Chapter 7), but it
accounts for the drawing of observations from a restricted
segment of the normal distribution. You can rely on it when
the values for the dependent and independent variables are
missing for part of the distribution (meaning they’re above
and/or below some threshold value).

When it comes to estimation, you can’t apply OLS estimation
to the observed data as if it’s representative of the entire
population. If you do, you’ll wind up with biased coefficients.
Instead, you need to use maximum likelihood (ML)
estimation so you can properly account for the truncation by
rescaling the normal distribution so that the cumulative
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probabilities add up to one over the restricted area. (For the
full scoop on ML estimation, see Chapter 13.)

Imagine you have the following model with upper-limit
truncation (the most common type of truncation you’ll see):

The dot (·) represents a missing value at and above the
truncation point. Using a rescaling of the normal distribution,
estimation is accomplished with ML rather than OLS. The log
likelihood function that’s maximized is

where F denotes the standard normal CDF. The coefficients
estimated using this procedure represent the marginal effects
(the impact on the dependent variable for a unit change in the
independent variable) for the whole population.

Figure 14-5 illustrates how to use STATA software
to estimate a truncated normal regression model. In this case,
I use data from a sample of workers to estimate how age
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affects the number of hours worked in a week. The sample is
truncated because it includes only those individuals who
worked full time (at least 35 hours in a week) and excludes
those who worked part time. To get the results you see here,
which show you how many observations are at the truncation
point, I use the “truncreg” command in STATA. (To define
the minimum and/or maximum threshold values at which the
truncation occurs, you can use the “ll” or “ul” options.)

As with Tobit estimation, the resulting coefficients from the
truncated normal estimation can be interpreted in the same
manner as traditional marginal effects from OLS. In Figure
14-5, the estimated effect of an additional year of age is an
increase of 0.243 hours worked per week, on average.
Truncated normal estimation also produces a chi-squared
statistic, which is like the F-statistic in OLS. It confirms or
rejects the null hypothesis that the estimated model doesn’t
produce a higher likelihood than a model with only a constant
term.
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Figure 14-5: STATA output from estimating a truncated
normal model.

Don’t ignore the truncation and estimate the model using
OLS or the coefficients will be biased toward finding no
relationship (smaller coefficients/effects). I illustrate this in
Figure 14-6, where I estimate the same model that I use in
Figure 14-5 but using OLS instead of the truncated normal
technique. Although age is statistically significant in both
cases (p-values less than 0.10), notice that its estimated effect
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is much smaller in Figure 14-6 in comparison to Figure 14-5.
The truncated normal regression results (Figure 14-5) imply
that an additional year of age increases the number of hours
worked in a week by 0.243, on average. On the other hand,
the OLS results (Figure 14-6) imply that hours worked
increase by only 0.044 per week, on average.

Oh, what the heck if I self select? Heckman’s selection bias
correction

Turn to the Heckman selection model when the
dependent variable is truncated but the values for the
independent variables are observed. (I describe truncated
dependent variables in the earlier related section.)

Figure 14-6: STATA output using OLS to estimate a model
that should be estimated using truncated normal regression.

Again, assume you’re working with the following model:
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with self-selection defined by

Using the joint distribution of ε and u, you can accomplish the
estimation required with the ML technique described in
Chapter 13. (Why not use OLS estimation? Because that
technique doesn’t suitably account for the self-selection of
observations into the estimation sample.)

The log likelihood function that’s maximized is
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where F denotes the standard normal CDF. In a Heckman
model, the variables that influence truncation usually aren’t
identical to those that influence the value of the dependent
variable (in contrast to the Tobit model, where they’re
assumed to be the same). The log likelihood function is also
similar to the truncated normal, but values for the independent
variables are observable (unlike the truncated normal). In
other words, a Heckman model can improve your estimates
over the truncated normal and Tobit techniques by using
information from variables that influence whether or not your
dependent variable is observed. The coefficients estimated
using this procedure represent the marginal effects (the
impact on the dependent variable for a unit change in the
independent variable) for the whole population.

Although ML estimation is the most efficient way
of estimating a selection model, the joint (bivariate normality)
distributional assumptions are restrictive, and sometimes
optimization of the likelihood function fails to converge.

An alternative to ML estimation of a selection model is to use
the Heckit model. It can be accomplished by following these
steps:

1. Estimate the selection equation
with a probit model (I

discuss the details of probit models in Chapter 13).

2. Compute the inverse Mills ratio:
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where f is the standard normal PDF and F is the standard
normal CDF.

3. Estimate the model using the
selected sample.

Your selection equation (the part of the model that
predicts truncation) should include all the independent
variables used to explain variation in the value of the
dependent variable plus some additional variables that only
influence the chances of truncation and not the level of the
dependent variable. In other words, the X variables should be
a subset of the W variables.

Lucky for you, most econometric software can
estimate Heckman models. Figure 14-7 shows STATA
outputs that use data from a sample of females to estimate
how age affects hourly wages (the natural log of hourly wages
is the dependent variable). I obtained the results by using the
“heckman” command in STATA. Note that the “select”
option is required to define the selection equation. In order to
obtain the alternative Heckit estimates, you can use the
“twostep” option. The output shows you how many
observations have unobserved values for the dependent
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variable and how each of the variables affects the selection
process.
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Figure 14-7: STATA output from estimating a Heckman
selection model.

Again, you can interpret the resulting coefficients from the
estimation of a Heckman selection model the same way as
traditional marginal effects from OLS. In Figure 14-7, an
additional year of age is associated with a 1.06 percent
increase in the hourly wage, on average (keep in mind that
this interpretation uses the fact that the dependent variable is
measured in logs). Estimation of a Heckman selection model
also produces a chi-squared statistic, which is similar to the
F-statistic in OLS and tests the null hypothesis that estimated
model doesn’t produce a higher likelihood than a model with
only a constant term.

In a selection model, the direction of bias from using OLS
depends on the nature of the selection process. In Figure 14-8,
I estimate the same model from Figure 14-7, but I use OLS
instead of the Heckman technique. In this particular example,
the selection doesn’t produce a large bias in the coefficients.
The Heckman results suggest that an additional year of age
increases hourly earnings, on average, by 1.06 percent while
the OLS results imply a 1.07 percent increase.
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Figure 14-8: STATA output using OLS to estimate a model
that should use the Heckman technique.
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Part VI

Extending the Basic Econometric Model
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If you're interested in discovering econometric
methods of forecasting, you'll love the free bonus chapter I
provide at www.dummies.com/extras/
econometrics.

In this part . . .

Use time-series data for static models (where the
dependent variable reacts instantaneously to changes in the
independent variable) and dynamic models (where the
dependent variable doesn’t react fully to a change in the
independent variable during the period in which the change
occurs).

Modify traditional econometric estimation techniques to
handle pooled cross-sectional data (data that has been
collected over time) and discover how analyzing pooled
cross-sections can be useful in evaluating policy changes that
occur at a specific point in time.

Analyze important economic questions that can’t be
addressed using data that are exclusively cross sectional or
time series by turning to panel data (data that features
identical cross-sectional units included in each time period
that data are collected).
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Chapter 15

Static and Dynamic Models

In This Chapter

Recognizing the difference between static and dynamic
models

Identifying and eliminating time trends

Spotting seasonal patterns in data

With time-series data, you obtain measurements on one or
more variables captured over time in a given space (a specific
country, state, and so on). In some cases, this leads to
econometric models with unique characteristics. In this
chapter, I provide some examples of regression models using
time-series data, and I discuss models that are similar to those
used with cross-sectional data (static models) and others that
are unique to time-series applications (dynamic models). I
also show you how time-series models can be used to
estimate trends and seasonality.

Using Contemporaneous and Lagged Variables in Regression
Analysis

When you’re using time-series data, you can
assume that the independent variables have a
contemporaneous (static) or lagged (dynamic) effect on your
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dependent variable. It depends on how your econometric
model assumes that the dependent variable will react:

If it reacts instantaneously to changes in the independent
variable(s), then your model is static and will estimate a
contemporaneous relationship at time t.

If it doesn’t react fully to a change in the independent
variable(s) during the period in which the change occurs, then
your model is dynamic and will estimate both a
contemporaneous relationship at time t and lagged
relationship at time t – 1.

You can specify a generic static model as Yt = β0 + β1Xt +εt,
where the t subscripts denote the importance of the
chronological ordering of observations.

A generic dynamic model is a distributed lag model. You can
specify it as

Yt = α + δ0Xt + δ1Xt – 1+ δ2Xt – 2 + … + δrXt – r + εt

where the t subscripts denote the time period and r denotes
the maximum number of lags (the maximum number of
periods it takes for the dependent variable to fully absorb
changes in the independent variables).

In the distributed lag model, Yt = α + δ0Xt + δ1Xt – 1 + δ2Xt – 2
+ … + δrXt – r + εt, δ0 captures the immediate impact of a
one-unit increase in the independent variable. This term is
known as the impact multiplier, or short-run propensity. The
long-run increase in the dependent variable due to a one-time,
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permanent increase in the independent variable is δ0 + δ1 + δ2
+ … + δr. It’s called the long-run propensity.

The following sections zero in on the dynamic model to show
you some of the inherent problems in the model and how you
can test and correct for autocorrelation in the model.

Examining problems with dynamic models

In practice, distributed lag models can be plagued
by estimation problems. The two most common issues are
high multicollinearity and the loss of degrees of freedom.
You’d expect the lag coefficients to steadily decline as the
change in the independent variables is gradually absorbed by
the dependent variable, but high multicollinearity usually
causes the coefficient estimates to display erratic behavior.
Furthermore, losing degrees of freedom for each additional
lag increases the standard errors and reduces the chances of
finding statistically significant coefficients.

A common solution to the estimation issues
associated with distributed lag models is to replace the lagged
values of the independent variable with a lagged value of the
dependent variable. This type of dynamic model is known as
an autoregressive model.

A simple autoregressive model can be expressed as Yt = α +
δXt + γYt – 1 + εt, where the dependent variable (Yt) is assumed
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to be influenced by the contemporaneous (current) value of
the independent variable (Xt) and the lagged (previous) value
of the dependent variable (Yt – 1).

Using the assumption that the same model holds in
previous periods, I can show that the autoregressive model is
equivalent to the distributed lag model. My model in the
current period is Yt = α + δXt + γYt – 1 + εt, so in the previous
period my autoregressive model would be Yt – 1 = α + δXt – 1 +
γYt – 2 + εt – 1. I can now substitute for Yt – 1 and get either

Yt = α + δXt + γ(α + δXt – 1 + γYt – 2 + εt – 1) + εt

or

Yt = (α + γα) + δXt + γδXt – 1 + γ2Yt – 2 + (γεt – 1 + εt)

Through recursive substitution, I end up with

Yt = α* + δXt + γδXt – 1 + γ2δXt – 2 + γ3δXt – 3 + … + γrδXt – r +
εt

*

which allows me to directly compare the coefficients in the
distributed lag model to those of the autoregressive model.
The resulting comparison is δ1 = γδ, δ2 = γ2δ, δ3 = γ3δ, ..., δr =
γrδ. Consequently, any value for γ between 0 and 1 ensures a
steadily declining effect for changes in the independent
variable that occurred in the more distant past.
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In Figure 15-1, I use STATA to estimate both an
autoregressive model (15-1a) and a distributed lag model
(Figure 15-1b) with the same dependent variable, Yt,
inventories. The data consists of yearly sales and inventory
data from 1950 to 1991. Prior to performing any time-series
operation, I have to specify which variable captures the time
component using the “tsset” command. That command keeps
the data internally organized and allows me to perform lag
operations that rely on the order of the data.
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Figure 15-1: STATA output of (a) autoregressive and (b)
distributed lag models.

The results first show the estimates from the autoregressive
model. Using those estimates, I can calculate the distributed
lag coefficients and write the autoregressive results in
distributed lag format as

δ1 = γδ = (0.18)(1.29) = 0.232

δ2 = γ2δ = (0.18)2(1.29) = 0.042

δ3 = γ3δ = (0.18)3(1.29) = 0.008

δ4 = γ4δ = (0.18)4(1.29) = 0.001

Notice, however, that these results aren’t consistent with the
distributed lag estimates from STATA because, for example,
δ1 = 0.232 in the autoregressive model while δ1 = 0.418 in the
distributed lag model. The distributed lag estimates (Figure
15-1b) suffer from unpredictable shifts in the parameter
estimates because they’re plagued by high collinearity.
Therefore, when estimating dynamic models, applied
econometricians prefer the autoregressive model (Figure
15-1a) to the distributed lag model.

Testing and correcting for autocorrelation in dynamic models

Autocorrelation occurs when the error term is serially
correlated, which means that the error term in one period is
correlated with the error term in another period. (I provide a
more precise definition of autocorrelation in Chapter 12).
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Autocorrelation is a typical problem that arises with
time-series data. In its presence, the standard errors are likely
to be biased, and the resulting measures of statistical
significance aren’t reliable (I suggest some solutions to this
issue in Chapter 12). However, in dynamic models of the
form Yt = α + δXt + γYt – 1 + εt, the problem of autocorrelation
is more common and more serious. Autocorrelation in a
dynamic model causes the OLS coefficients to be biased.

I can show the source of bias in a dynamic model
with autocorrelation εt = ρεt – 1 + ut by substituting the
autocorrelation process into the model, so Yt = α + δXt + γYt –
1 + ρεt – 1 + ut. If I lag the original model by one period, I
have Yt – 1 = α + δXt – 1 + γYt – 2 + εt – 1. Consequently, I find
that a change in εt – 1 causes both εt and Yt – 1 to change.
Because Yt – 1 is an independent variable in the original
model, its relationship (correlation) with εt is problematic
because it violates a classical linear regression model
(CLRM) assumption that the value of the error term and
independent variables isn’t correlated.

Because econometricians view biased coefficients to be more
problematic than biased standard errors, testing for
autocorrelation is essential if you’re estimating a dynamic
model. Turn to the Breusch-Godfrey test in this scenario. (I
provide step-by-step instructions for performing this test in
Chapter 12.) If you find evidence of autocorrelation, you can
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perform the preferred method of autocorrelation correction
with dynamic models: feasible generalized least squares
(FGLS). You can find the details of this procedure in Chapter
12.

Avoid using the Durbin-Watson d statistic when
you’re estimating a dynamic time-series model. Although it’s
a common test for autocorrelation in static time-series
models, if you try to use it in a dynamic time series model,
you’re more likely to find no evidence of autocorrelation even
in its presence. In a dynamic model, the Durbin-Watson d
statistic is biased toward 2 (that is, finding no
autocorrelation).

Projecting Time Trends with OLS

Most economic time series grow over time, but sometimes
time series actually decline over time. In either case, you’re
looking at a time trend.

The most common models capturing time trends are
either linear or exponential. If the dependent variable has a
relatively steady increase over time, your best bet is to model
the relationship with a linear time trend. However, if the
growth rate is fairly steady (while the rate at which the value
of the dependent variable changes isn’t constant), then you
need to model the relationship with an exponential time trend.
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A linear time trend has the form Yt = α0 + α1t + εt, where t
is the time trend variable (usually a sequential numbering of
the time periods beginning with a value of 1) and α1 is the
time trend coefficient and represents the rate at which the
value of the dependent variable changes, on average, in each
subsequent time period. If α1 is positive, then the dependent
variable increases over time. If α1 is negative, then the
dependent variable decreases over time.

You can express an exponential time trend as ln Yt = α0
+α1t + εt, where t is the time trend variable and α1 is the time
trend coefficient and represents the rate at which the growth
of the dependent variable changes, on average, in each
subsequent time period. If α1 is positive, then the dependent
variable’s growth rate is positive over time. If α1 is negative,
then the dependent variable’s growth rate is negative over
time. (I provide additional details about these types of
exponential functions in Chapter 8.)

In Figure 15-2, I use STATA to graph yearly
inventories from 1950 to 1991 and estimate a time trend
model. Most datasets don’t contain a time variable, so you
can do as I do here and sort the data using the variable that
captures the sequencing of observations (year) and create the
time variable. Given the depiction of the time series in Figure
15-2, applying the exponential time trend model is most
appropriate in this case. The estimated value of 0.07 for α1
implies that, on average, inventories have grown at a rate of
approximately 7 percent per year.
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Figure 15-2: STATA yearly time-series graph and output
from estimating a time trend model.

In my example, creating the trend variable is a
straightforward procedure because there’s only one time
variable. But in some cases, multiple time variables exist. For
example, with monthly data that spans several years, the data
is likely to contain a year and month variable. In that case,
you’d want to sort by both year and month before you create
the trend variable.

When dealing with observations measured over
multiple time periods, the value of the trend variable should
always represent the order of the observation in a
chronological sequence.

If you’d like to avoid using a log transformation of
your dependent variable (perhaps it doesn’t seem appropriate
with the other factors that you’ve included in the model as
independent variables), then a quadratic time trend can also
work well in situations where the time trend isn’t linear.
Although higher order polynomials could be used for your
time trend, they aren’t popular among applied
econometricians because they’re difficult to justify
theoretically and typically consume additional degrees of
freedom without significantly increasing the explanatory
power.
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In the following subsections, you extend your ability to use
time trends in econometric models. Specifically, you see how
time trends can be used to mitigate problems of spurious
correlation and how trend coefficients can be used to detrend
time-series data.

Spurious correlation and time series

The change/trend (positive or negative) of values over time
isn’t necessarily unique to your dependent variable. In
general, all time-series variables (including your independent
variables) are susceptible to this tendency. The consequence
of failing to properly account for this common trend
component is that you’ll overstate the explanatory power of
your independent variables.

If your regression model contains dependent and
independent variables that are trending, then you end up with
a spurious correlation problem. Using regression results
when spurious correlation is present leads to erroneous
conclusions about the causal effect of the independent
variable(s).

Consider the model

Yt = β0 + β1Xt1 + β2Xt2 + … + βpXtp + εt

where you believe that X directly causes Y. If, however, both
X and Y exhibit an upward (or downward) trend for reasons
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unrelated to the relationship they have with each other, the
results appear to show that X has a strong effect on Y.

If time significantly explains variation in the dependent
variable and is also correlated with your independent variable,
then you’ve excluded a relevant variable from your model
and have introduced bias into your estimated coefficients.

Adding some form of time trend component (linear,
quadratic, or exponential) to your regression takes care of the
spurious correlation problem. The time trend now picks up
the co-movement of your variables and allows you to make
more convincing arguments about their causal relationship.

For example, if you have a situation where unobserved factors
are causing your dependent and independent variables to
increase (or decrease) over time, then you should estimate a
model like this:

Yt = β0 + β1Xt1 + β2Xt2 + … + βpXtp + λt + εt

where X represents your independent variable and t is a trend
variable (a sequential numbering of the time periods
beginning with a value of 1). In this model, suppose I initially
use U.S. GDP as the Y variable and my age as the only X
variable. I find a positive relationship between my age and
GDP, giving the appearance that my increasing age causes
GDP growth. This occurs because both increase over time. If
I include the time trend variable, t, then the explanatory
power of my age disappears.
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Including a trend variable doesn’t always reduce the
explanatory power of other independent variables. If your
dependent variable trends in one direction and your
independent variable trends in the other direction, then the
inclusion of the trend variable may increase the significance
of your independent variable.

Detrending time-series data

If you remove trending patterns from the data, that data is
considered trend-adjusted or detrended. The main point of
estimating a regression model with detrended data is to derive
the explanatory power of the other independent variables.

If you want to obtain a goodness-of-fit measure that
isolates the influence of your independent variables, you need
to estimate your model with detrended values for both your
dependent and independent variables.

Here’s how to obtain the goodness-of-fit, or R-squared, net of
trend effects:

1. Regress your dependent variable on the trend variable
to obtain the estimated function and
retain the residuals from this regression.

2. Regress each of your independent variables on the
trend variable to obtain the estimated functions
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, where k represents a specific
independent variable, and retain the residuals from all k
of these regressions.

3. Regress the residuals obtained in Step 1 ( ) on the
residuals obtained in Step 2 ( ) to estimate

.

The R-squared from this regression provides a better of
measure of fit when the time series exhibits extensive
trending.

The traditional R-squared can be overinflated when the data
contains significant trending. Under these circumstances, you
can find an alternative R-squared value by estimating a
regression with detrended data.

In Figure 15-3, I use STATA to estimate the impact
of yearly sales on inventories from 1950 to 1991. First I
estimate the model with the raw data. Then I estimate the
model with detrended data. Detrending the data has a small
effect on the results in Figure 15-3. As expected, the
R-squared is smaller after the data is detrended (0.9936
compared to 0.9992), but the difference isn’t large. In this
case, the result implies that the independent variable’s ability
to explain variation in the dependent variable isn’t being
highly overstated by trending.
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Figure 15-3: STATA time-series output from estimating a
detrended model.

In your primary econometric results, report the
estimates from the model with the raw data and trend
variable(s), not the detrended data.

Using OLS for Seasonal Adjustments

The higher the frequency of an economic time series, the
more likely it is to display seasonal patterns. For example,
retail sales figures often exhibit a significant increase around
the winter holidays. When you’re dealing with quarterly data,
this increase is likely to be reflected with larger values in the
fourth quarter of each year. However, with monthly data, the
change is more evident with even sharper increases in sales
during the months of November and December.

The most common models capturing seasonal
patterns include dummy variables representing the frequency
with which the data were collected (usually quarter or month
dummies).

A typical seasonal pattern is modeled with the specification Yt
= α0 + α1S1 + α2S2 + … + εt.

where S variables are your season dummy variables (flip to
Chapter 9 for more on dummy variables) and the various α
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are the season coefficients representing the impact of each
season, on average, on the dependent variable. If an α is
positive, then the dependent variable increases during that
season. If an α is negative, then the dependent variable
decreases during that season.

In Figure 15-4, I use STATA to graph the log of
monthly souvenir sales from 1987 to 1993 and estimate a
seasonal pattern model. The dummy variables capturing the
month of each observation have already been created. Given
the depiction of the time series here, I can deduce that
December will have significantly larger sales figures in
comparison to other months. Using January as the reference
month, several months have significantly larger sales figures.
In comparison to January, sales are 74 percent larger in
March and increase by more than 200 percent, on average, in
December.

In the following sections, I explain how you can estimate the
effect of seasonal variation on your dependent variable and
then tell you how to remove seasonal patterns from your
time-series data.

Estimating seasonality effects

Seasonality effects can be correlated with both your
dependent and independent variables. In order to avoid
confounding the seasonality effects with those of your
independent variables, you need to explicitly control for the
season in which the measurement is observed.
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Figure 15-4: STATA monthly time-series graph and output
from estimating a seasonal pattern model.
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If you include dummy variables for seasons along
with the other relevant independent variables, you can
simultaneously obtain better estimates of both seasonality and
the effects of the other independent variables.

Consider the model Yt = β0 + β1Xt1 + β2Xt2 + … + βpXtp + εt
for a situation in which you believe that X directly causes Y.
If, however, both X and Y are affected by seasonal trends for
reasons unrelated to the relationship they have with each
other, then X appears to have a strong effect on Y.

If seasonality significantly explains variation in the dependent
variable and is also correlated with your independent variable,
then you’ve excluded relevant variables from your model and
have introduced bias into your estimated coefficients.

Adding season dummy variables to your regression
allows you to pick up the seasonal co-movement of your
variables and therefore make more convincing arguments
about the causal relationship between your independent
variables (Xs) and dependent variable (Y).

If you have a situation where seasonal effects are likely, then
you should estimate a model like

Yt = β0 + β1Xt1 + β2Xt2 + … + βpXtp + λ1S1 + λ2S2 + … + εt
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where X represents your independent variable and S is your
season dummy variable.

Deseasonalizing time-series data

In many cases, seasonal patterns are removed from
time-series data when they’re released on public databases.
Data that has been stripped of its seasonal patterns is referred
to as seasonally adjusted or deseasonalized data.

In order to obtain a goodness-of-fit measure that
isolates the influence of your independent variables, you must
estimate your model with deseasonalized values for both your
dependent and independent variables. Here’s how to do just
that:

1. Regress your dependent variable on the seasonal
dummy variables to obtain the estimated function

and retain the residuals from
this regression.

2. Regress each of your independent variables on the
seasonal dummy variables to obtain the estimated
functions , where k
represents a specific independent variable, and retain the
residuals from all k of these regressions.

3. Regress the residuals obtained in Step 1 ( ) on the
residuals obtained in Step 2 ( ) to estimate

.
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The R-squared from this regression provides a better measure
of fit when the time series exhibits considerable seasonality.

The traditional R-squared can be overinflated when the data
contains significant seasonal patterns. If you encounter this
situation, simply estimate a regression with deseasonalized
data to find an alternative R-squared value.

Figure 15-5 uses STATA to estimate the impact of
log monthly unemployment and a time trend on the log of
souvenir sales between 1987 and 1993. I first estimate the
model with the raw data, and then I estimate the model with
deseasonalized data. I exclude the output for the intermediate
steps to save space. As expected, the R-squared is smaller
after the data is deseasonalized (0.9106 compared to 0.9539),
but the difference isn’t big. The coefficient estimates for the
unemployment and trend variables are similar in both
regressions, so the results imply that the role of the
independent variables isn’t affected by seasonal patterns.
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Figure 15-5: STATA time-series output from estimating a
deseasonalized model.
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Econometricians mainly estimate the regression
model with deseasonalized data to derive the explanatory
power of the other independent variables. Your primary
econometric results, however, should report the estimates
from the model with the raw data and season dummy
variables.
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Chapter 16

Diving into Pooled Cross-Section Analysis

In This Chapter

Understanding the nature of pooled cross-sectional data

Revealing the flexibility of pooled cross-section
econometric analysis

Estimating treatment or policy effects using the
difference-in-difference estimator

A pooled cross section combines independent cross-sectional
data that has been collected over time. For example, the
Current Population Survey collects independent
cross-sectional data by surveying 60,000 randomly selected
households in the United States each month. Combining or
merging CPS data collected over many years into one dataset
gives you a pooled cross section.

The advantage of pooled cross-sectional data is that more
observations tend to improve the accuracy of econometric
estimates, and the added time element allows you to explore
dynamic adjustment (how your outcome of interest, or Y
variable, responds to factors as they change over time). In this
chapter, I show you how you can modify traditional
econometric estimation techniques to handle pooled
cross-sectional data and how this type of analysis can be
particularly useful in examining changing relationships
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between variables and evaluating policy changes that occur at
a specific point in time.

Adding a Dynamic Time Element to the Mix

Unlike typical cross-section analysis, which imposes a static
nature to your models, a pooled cross section allows you to
incorporate a dynamic time element. You can do this with a
pooled cross section because cross-sectional units are
observed in two or more periods.

Typically, pooled cross sections contain many more
cross-sectional observations than the number of time periods
being pooled. Consequently, the models usually resemble
cross-sectional analysis with possible heteroskedasticity
corrections (I cover heteroskedasticity in Chapter 11).
Because the time gap between the collection of
cross-sectional units is usually large (anywhere from one year
to several years apart), autocorrelation and other time-series
issues tend to be ignored (for details on autocorrelation, see
Chapter 12).

It’s not uncommon to confuse a pooled cross section with a
panel dataset. Both contain cross-sectional measurements in
multiple periods, but in a panel dataset the same
cross-sectional units are included in each time period rather
than being randomly selected in each period.

In the following sections, you see how pooled cross-sectional
data can allow you to identify more complex relationships
between your dependent and independent variables. In
addition, I show you how to construct and estimate models
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that allow you to fully exploit the richness of pooled
cross-sectional data.

Examining intercepts and/or slopes that change over time

With pooled cross-sectional data, the population distribution
from which the random samples are drawn may change over
time.

If you use a pooled cross section, you’ll want to
examine potential time effects. If you ignore these time
effects, you may obtain biased estimates of your regression
coefficients.

One possibility is that a changing population distribution
results in different intercepts and/or slopes over time. In
Figure 16-1, I illustrate how accounting for a changing
intercept may be important with pooled cross-sectional data.
If you don’t account for time effects, you obtain the sample
regression line 1A (with a biased estimate of the intercept).
However, accounting for time allows you to identify lines 1B
and 1C.

Time can also influence the impact of your independent
variable on the dependent variable by altering the magnitude
of the slope, as I show in Figure 16-2. If you ignore time
effects, you’ll end up with line 2A. Regression line 2A has
heteroskedasticity (a topic I discuss in Chapter 11) and, more
importantly, a biased estimate of the slope (impact of the
independent variable). By accounting for time effects, you
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can identify lines 2B and 2C, which appropriately estimate
the slope.

Figure 16-1: A pooled cross section with different intercepts.

Figure 16-2: A pooled cross section with different slopes.
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Incorporating time dummy variables

You can account for a changing distribution of the population
over time by using time-period dummy variables.
Specifically, you can say that these variables take on a value
of 1 for a given time period and 0 otherwise. (For the scoop
on regular dummy variables, turn to Chapter 9.) Including
dummy variables in your model for each time period, except
the reference period (usually the first or last period of the
pooled cross sections), allows you to identify changing
parameter values.

You can tell whether the population distribution has
changed by observing different intercepts and/or slopes.

The basic model utilizing pooled cross-sectional data is
specified as

Yi = β0 + β1Xi1 + β2Xi2 + … + δ1Ri1 + δ2Ri2 + … + εi

where R represents the time period (1,2, …) from which the
cross-sectional observation was drawn. By examining the
statistical significance of the estimated δ (or ) terms, you can
identify any shifts (whether up or down) in the relationship
for a given period.

Adding time-period dummy variables interacted with the
other independent variables allows you to identify both
changing intercepts and slopes. If you have cross sections for
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two time periods — a quite common scenario — your model
with dummies and interactions would be specified as

Yi = β0 + β1Xi1 + β2Xi2 + … + δ0Ri + δ1(X1 · R)i + δ2(X2 · R)i +
… + εi

where (Xk · R) represents the interaction of the independent X
variable with the time period dummy variable. If you find that

is statistically significant, you have evidence that the
function has shifted from one time period to the next. If any
of the , , and so on are statistically significant, then the
relationship between a particular X variable and the dependent
variable changes over time.

If you’re interested in any distributional change that
may have occurred in your population of interest between
time periods, you can perform an F-test of joint significance
for all the δ (δ0, δ1, δ2, …) parameters (I discuss tests of joint
significance in Chapter 7). Essentially, this test identifies
whether the time period has a collective influence on the
intercept and/or impact of the independent variables. It’s
equivalent to performing a Chow test for structural stability (I
cover the Chow test in Chapter 8).

In Figure 16-3, I illustrate how you can create a
pooled cross section in STATA. The data is compiled using
two random samples of workers from the Current Population
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Survey (CPS) in 2010 and 2011. After you collect multiple
cross sections with the same variables, especially one that
captures the time period from which the cross section was
drawn, you can use the “append” command in STATA to
pool the cross sections. For males between the ages of 16 and
25, I’m interested in the impact of age on labor force
participation. I use STATA to estimate a model using a time
period dummy variable and its interaction with the age
variable.

For ease of interpretation, I estimate a linear probability
model (flip to Chapter 13 for full details on this type of
model). The results suggest that young males were about 40
percent more likely to be in the labor force in 2011 compared
to 2010. This has shifted the labor force participation rate up.
In addition, the interaction coefficient implies that the
relationship between age and labor-force participation has
changed; an additional year of age is associated with 0.07
probability (7 percent) increase of labor force participation in
2010, but a 0.05 (0.07 – 0.02) probability (5 percent) increase
in 2011. The F-test of joint significance for the time dummy
variable and its interaction with the age variable is equivalent
to a Chow test. In this case, the result rejects the null
hypothesis of structural stability (F = 70.47, p-value < 0.01),
so the relationship between the dependent and independent
variables changed significantly over the time span covered by
the data.
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Figure 16-3: A STATA regression output with pooled
cross-sectional data and time-period controls.

Using Experiments to Estimate Policy Effects with Pooled
Cross Sections

Empirical researchers in the areas of labor, health,
development, and other fields of economics are increasingly
relying on pooled cross-sectional data for their analyses.
Generally, if your interests are in any area of economics
where policy evaluation is important, you’ll probably want to
introduce a time element into your analysis.
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Measuring variables over a period of time and from
a randomly selected group of observations enables you to
quantify before and after outcomes. Then you can estimate
the impact of policies that were implemented at some point in
between the first period and the last period you observe the
variables.

Experiments allow researchers to observe the impact of
specific conditions by manipulating an independent variable.
Because economists are often interested in how policies affect
economic outcomes, experiments can be useful mechanisms
to quantify policy (or treatment) effects. Two types of
experiments exist: true experiments and natural (also known
as quasi) experiments. The next sections tell you more about
each type.

Benefitting from random assignment: A true experiment

In a true experiment, subjects are randomly
assigned to two (or more) groups. One group from your
population of interest is randomly assigned to the control
group, and the remainder is assigned to the treatment
group(s). With random assignment, you can estimate the
policy (treatment) effect by calculating the average difference
between the treatment and control groups, holding other
independent influences constant.
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The econometric specification to identify a treatment effect in
a true experiment is

Yi = β0 + β1Xi + β2Gi + εi

where X captures the influence of factors unrelated to being in
the treatment group and G is a dummy variable equal to 1 if
the observation was subject to a specific policy (or treatment)
and 0 otherwise. Consequently, would estimate the average
treatment (policy) effect on outcome Y.

In the model Yi = β0 + β1Xi + β2Gi + εi, the expected
value of the treatment is as follows:

Note: In a true experiment, the E(X) isn’t affected by
selection into the treatmentgroup because subjects are
randomly assigned, so .

If conditions of a true experiment are present, you
can estimate policy effects by adding a dummy variable to
your econometric model that identifies the group who is
subject to the new policy. If you’re using a pooled cross
section and a new policy was implemented in between the
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time the two cross sections were obtained, then a time period
dummy can be used to identify the groups.

Working with predetermined subject groups: A natural (or
quasi) experiment

In a natural (or quasi) experiment, subjects aren’t
randomly assigned to treatment and control groups. Instead,
membership of subjects into their respective groups is
determined by conditions outside your control. If placement
into a treatment group isn’t random, the estimation of policy
(treatment) effects requires that you control for systematic
differences between subjects in the control group and those in
the treatment group.

In Figure 16-4, I illustrate a plausible scenario differentiating
subjects from the control and treatment groups.
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Figure 16-4: A natural experiment with treatment and control
groups.

Subjects are usually observed at specific points in time
(Period 1 and Period 2) with the first observation period
occurring before the policy change and the subsequent
observation period occurring after the policy change.

Some of the difference between the treatment and control
groups post-policy change is preexisting. Without the
randomization of a true experiment, subjects with certain
characteristics may be more likely to belong to the treatment
or control group. Additionally, another component of the
post-policy change difference between the groups is a general
trend.
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In order to properly identify the policy effect, you
need to difference out both preexisting differences between
the groups and time-period effects. Consequently, the
commonly accepted identification of policy effects is known
as difference-in-difference (D-in-D).

In Figure 16-5, I decompose the difference between the
treatment and control groups to illustrate the policy effect.
Note that the policy effect must account for differences in the
control and treatment groups as well as the impact of time
itself.

Figure 16-5: A decomposition of differences to find policy
effect.
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You can estimate the policy effect directly with
pooled cross-sectional data and an econometric model
specified as

Yi = β0 + β1Gi + β2Ri + β3(G · R)i + εi

where G equals 1 if the subject is in the control group and 0 if
it isn’t, R equals 1 if the subject was observed in the second
period and 0 otherwise, and (G · R) is the interaction between
G and R (I fill you in on interaction terms in Chapter 9). In
this model, β3 is the D-in-D parameter capturing the policy
effect.

In Table 16-1, I use the parameters from the model Yi = β0 +
β1Gi + β2Ri + β3(G · R)i + εi to show how this specification
identifies the policy (D-in-D) effect.

If you want to measure a policy effect, you can do so by
estimating one econometric model and focusing on one
coefficient ( ).
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In applied settings, you can modify the basic
D-in-D econometric model to control for other characteristics
that may vary systematically across subjects. In a typical
scenario, your D-in-D model will have the form Yi = β0 +
β1Gi + β2Ri + β3(G · R)i + β4Xi + … + εi, where X represents
additional control variables that augment the basic D-in-D
model.

In Figure 16-6, I illustrate how you can create a
pooled cross section in STATA and estimate a D-in-D model.
You collect multiple cross sections with the same variables,
especially ones that capture the time period from which the
cross section was drawn. Then you can use the “append”
command in STATA to pool the cross sections. In this
example, I look at the impact of increasing the minimum
wage on labor-force participation for males between the ages
of 16 and 25. Using a pooled cross section of the Current
Population Survey (CPS) from 2010 and 2011, I can identify
a control group where there was no change in the minimum
wage (the state of Indiana) and a treatment group where there
was a change in the minimum wage (the state of Illinois).

I estimate a linear probability model so the results are easy to
interpret. (Check out Chapter 13 for info on these models.)
The results suggest that young males in Illinois and Indiana
were about 6 percent more likely to be in the labor force in
2011 compared to 2010, holding other factors constant. The
labor-force participation rate shifted up. In addition, for every
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additional year of age, young males in these states increase
their probability of labor force participation by 0.08 (8
percent). Finally, the D-in-D estimator of –0.09 implies that
the policy change (increased minimum wage in Illinois) was
associated with a decrease in labor force participation among
young men.

Figure 16-6: STATA output of a difference-in-difference
model.

Although the model in Figure 16-6 controls for age, the
model could be expanded to control for other factors that may
differ systematically between the years, including education,
marital status, and many other potential characteristics.
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However, that expansion wouldn’t change how you estimate
the D-in-D (policy effect) or interpret the results.
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Chapter 17

Panel Econometrics

In This Chapter

Reducing bias by using panel data

Understanding the difference between fixed effects and
random effects estimation

Using the Hausman test results to choose the appropriate
panel model

Like pooled cross-sectional data (which I cover in Chapter
16), panel (or longitudinal) data also includes both
cross-sectional and time-series dimensions. The fundamental
difference is that the identical cross-sectional units
(individuals, firms, cities, countries, and so on) are included
in each time period during which data are collected rather
than randomly selecting a cross-sectional group in each time
period. Examples of well-known panel datasets include the
National Longitudinal Surveys (NLS), the Panel Study of
Income Dynamics (PSID), and the Survey of Income and
Program Participation (SIPP).

In this chapter, you discover how panel econometric analysis
helps you deal with the elusive omitted variable problem that
can be present in both cross-sectional and time-series
regression analysis. You also see how software can be used to
implement these procedures and appropriately deal with the
special challenges that arise with panel-data analysis.
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Estimating the Uniqueness of Each Individual Unit

One of the strengths of panel data is that it permits
analysis of important economic questions that can’t be
addressed using data that are exclusively cross sectional or
time series. By utilizing repeated information on the
individual entities being investigated, you can control for the
effects of some missing or unobserved variables. The things
you don’t observe can be important factors determining your
outcome of interest, so dealing with this form of omitted
variable bias can be a huge benefit of panel data.

An observable variable can be something like age, education,
or anything that’s typically identified in surveys. An
unobservable variable can be an individual’s work ethic,
natural ability, or any information that’s not easily obtained
when data is collected.

Suppose the model that explains your outcome of interest is

Yit = β0 + β1Xit + β2wit + εit

where i = 1,…, n represents the cross-sectional unit beginning
with the first individual unit (1) and proceeding to the last (n),
t = 1,…, T captures the time period in which the subject is
observed beginning with the first time period (1) and
proceeding to the last (T), X is an observable independent
variable, and w is an unobservable independent variable.
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The danger with combining panel data and OLS
estimation is that you may end up with results containing
heterogeneity bias. This bias occurs if you ignore
characteristics that are unique to your cross-sectional units
(relegate those things to the error term) and they’re correlated
with any of your independent variables (see Chapter 8 for a
deeper look at omitted variable bias). The direction of the bias
can be difficult to predict and is usually revealed only after
you’ve appropriately handled systematic differences between
your cross-sectional units (individual heterogeneity).

In Figures 17-1, 17-2, and 17-3, I illustrate some examples of
heterogeneity bias resulting from ignoring individual fixed
effects. In each of the figures, the slopes of lines A, B, and C
represent the estimated impact of X on Y. However, in order
to properly identify these lines, you need to account for the
individual units that are represented in the panel data. If the
panel is treated like a pooled cross section and you don’t take
measures to control for individual fixed effects, you run the
risk of obtaining biased estimates of the relationship between
X and Y. The lines labeled with a D identify the pooled (and
biased) OLS estimates.

In Figure 17-1, the pooled OLS estimate (line D) results
in an overestimate of the impact of X on Y, as illustrated by
the parallel lines A, B, and C.

In Figure 17-2, the pooled OLS estimate (line D) results
in an underestimate of the impact of X on Y, as illustrated by
the parallel lines A, B, and C.
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In Figure 17-3, the pooled OLS results (line D) generate a
negative estimated impact of X on Y when, as illustrated by
the parallel lines A, B, and C, the effect is actually positive.

Figure 17-1: OLS estimates produce a steeper slope by
ignoring individual fixed effects.
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Figure 17-2: OLS estimates produce a flatter slope by
ignoring individual fixed effects.

Figure 17-3: OLS estimates are in the wrong direction
because individual fixed effects are ignored.

The existence of unobservable factors that consistently impact
your outcome of interest (Y variable) is likely with panel data,
which means you need to consider using one of three
estimation methods (I tell you about each one in the following
sections):

First difference (FD) transformation

Dummy variable (DV) regression

The fixed effects (FE) estimator (the method most
commonly used by applied econometricians)

First difference (FD) transformation
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With panel data, you can deal with unobservable variables by
applying a first difference (FD) to the data. To transform the
data into an FD, you subtract the previous value of a variable
from the current value of that variable for a particular
cross-sectional unit and repeat the process for all variables in
the analysis.

After you perform an FD transformation, you can
estimate the model using OLS with all the first-differenced
data. Doing so eliminates (differences out) any fixed effects
associated with the cross-sectional units, even if those
characteristics aren’t observable. Repeated observations for
the same entities allow you to get rid of the effect of
unobservable factors only if those characteristics are constant
over time for each entity.

In order to use the FD approach, I rely on a couple
of assumptions. First, I assume that the values for the
unobserved variable remain constant through time for a given
subject, but vary across subjects; , which means
that wit is equal to wi for all values of t. Second, I assume that
the model doesn’t change over time; Yit = β0 + β1Xit + β2wit +
εit and Yit – 1 = δ0 + β1Xit – 1 + β2wit – 1 + εit – 1. After I establish
these two assumptions, I can take the first difference (FD) of
individual observations over time and obtain
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where Δ denotes change and the unobserved variable (w) has
been differenced away.

Dummy variable (DV) regression

If you have panel data, the simplest approach in estimating
your model is to pool all the years of data and apply ordinary
least squares (OLS) so that you’re essentially ignoring the
panel nature of the data. (I explain model estimation with
pooled cross-sectional data in Chapter 16.) In that case, your
model would look something like

Yit = β0 + β1Xit + vit

where vit = wi + εit. The vit term is known as the composite
error because it contains individual fixed effects and an
idiosyncratic error. The individual fixed effects are
unobservable factors associated with the individual subjects,
whereas the idiosyncratic error represents a truly random
element associated with a particular subject at a specific point
in time.

One way to account for individual fixed effects is
by using the dummy variable (DV) regression. You apply this
approach by including dummy variables in your model for
each cross-sectional unit, making it a straightforward
extension to the basic use of dummy variables that I cover in
Chapter 9.
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Panel data is a necessary prerequisite for estimating
a DV model. With cross-sectional data, this approach leads
you to defining a dummy variable for every observation.
Consequently, you exhaust all your degrees of freedom and
end up with meaningless results.

A model that explicitly accounts for individual
fixed effects can be specified as , where αi0
is a unique intercept for each individual (the ith
cross-sectional unit). More generally, a DV model can be
represented as

where A = 1 for any observation that pertains to individual i
and 0 otherwise.

If your data contains a large number of individuals
(cross-sectional units), which is quite common with panel
data, then the DV approach can be computationally
burdensome (even for a computer) and impractical. A better
alternative to this approach is the fixed effects (FE) estimator,
which I describe in the next section.

Fixed effects (FE) estimator
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The most common method of dealing with fixed
effects of cross-sectional units is known as the fixed effects
(FE) estimator. FE estimation is applied by time demeaning
the data. In other words, you calculate the average value of a
variable over time for each cross-sectional unit and subtract
this mean from all observed values of a given cross-sectional
unit, repeating the procedure for all the cross-sectional units.
Demeaning deals with unobservable factors because it takes
out any component that is constant over time. By assumption,
that would be the entire amount of the unobservable variable.

Because the FE estimator is the most common method for
dealing with individual fixed effects among applied
econometricians, most econometrics software packages have
a specific command that automatically performs the
demeaning transformation of the data, properly calculates the
degrees of freedom, and appropriately adjusts the standard
errors.

For FE estimation, you must first specify the model
as

where

515



and β1 is known as the fixed effects estimator (or within
estimator). The unobservable variable (w) has been demeaned
away because the values are assumed constant over time.
Finally, I place the ~ above the other variables to note they’ve
been transformed into their time-demeaned versions (also
called the within transformation).

You may be tempted to calculate the degrees of
freedom with FE estimation using the traditional (OLS)
calculation (total number of observations minus the number
of estimated parameters), but be careful! First, notice that you
don’t have an intercept to work with. And remember that you
lose one degree of freedom for each cross-sectional
observation from demeaning. Consequently, the correct
formula for calculating the degrees of freedom is nT – n – p,
where n is the number of cross-sectional units, T is the
number of time periods, and p is the number of independent
variables.
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Typically, FE models also include time effect
controls. You can add them by adding dummy variables for
each time period in which cross-sectional observations were
obtained. With time effects, you capture anything that may
affect all cross-sectional units equally, on average, at a
specific point in time.

In Figure 17-4, I illustrate how you estimate an FE
model in STATA. The data consists of a sample of workers
from the 1997 National Longitudinal Survey of Youth
(NLSY). The same individuals are observed for ten years
(1997–2006), but I use only those who were between 18 and
25 years of age at the time of the first interview (1997). In
order to utilize STATA’s panel econometrics tools, I first use
the “xtset” command to declare the data as panel and tag the
variables that identify cross-sectional units and time periods.
After I execute the “xtset” command, STATA can make any
calculations relevant for estimation, including the time
demeaning necessary for FE. For my subsample of workers,
I’m interested in the impact of education on the natural log of
wages. I use STATA to estimate OLS and FE models. For the
FE model, I have to use the “xtreg” command and specify the
“fe” option rather than use the standard “regress” or “reg”
commands.
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Figure 17-4: Using panel data to estimate an OLS and FE
model in STATA.

As you can see in Figure 17-4, the impact of education is
larger with FE than with OLS. An additional year of
education increases wages by 4 percent with the OLS
estimates and increases wages by 8.7 percent with the FE
estimates (I discuss the interpretation of coefficients with the
log-linear specification in Chapter 8). Consequently, the OLS
results underestimate the impact of education by ignoring
unobserved individual heterogeneity.
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Increasing the Efficiency of Estimation with Random Effects

If you have panel data, your econometric model can explicitly
estimate the unobserved effects associated with your
cross-sectional unit using the fixed effects (FE) model: Yit =
β0 + β1Xit + β2wit + εit, where wit = wi are unobserved
characteristics for each cross-sectional unit that don’t vary
over time. (I explain how to estimate this model in the
preceding section.) On the other hand, your econometric
model can allow all unobserved effects to be relegated to the
error term by specifying the model as

Yit = β0 + β1Xit + vit

where vit = wi + εit. This approach is known as the random
effects (RE) model and is the focus of this section.

With panel data, the advantage of the RE model
over the FE model is more efficient estimates of the
regression parameters. The RE technique doesn’t estimate the
fixed effects separately for each cross-sectional unit, so you
get fewer estimated parameters, increased degrees of freedom,
and smaller standard errors.

The composite error term and assumptions of random effects
model

As with other types of estimation methods, the legitimacy of
using the RE technique to estimate your model Yit = β0 + β1Xit
+ vit rests on the characteristics of its error term vit = wi + εit.

519



The error term in a RE model is known as the composite error
term because it combines two components. This term was
also used in the previous section (where you learn about the
fixed effects model), but the random effects model requires
that you pay more attention to the specific components of the
error term:

The unobserved effects associated with each particular
cross-sectional unit (wi)

A completely random element that isn’t associated with
the cross-sectional units (εit)

A critical assumption of the RE model is that the
unobserved individual effect (wi) isn’t correlated with the
independent variable(s); Cov(Xit, wi) = 0. If the individual
effect is correlated with the independent variable(s), then the
RE estimate is biased.

The assumption that the individual effects aren’t
correlated with the independent variable(s) doesn’t imply that
the individual effects are identical for every observation.
Rather, it implies that their values are random (some negative
and some positive) with no association with the observed
values of the independent variable(s). Therefore, the
individual effects are appropriately captured by the intercept
term; . In addition, for the homoskedasticity
assumption to hold, you must also impose a constant variance
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on the individual effects; (I cover the
homoskedasticity assumption in detail in Chapter 11).

The random effects (RE) estimator

If you have panel data and believe that variable Y depends on
variable X, then you may be tempted to estimate the model Yit
= β0 + β1Xit + vit using OLS. However, your results would be
flawed because OLS ignores the unique nature of the error
term. The composite error term (vit) is vit = wi + εit. Although
εit satisfies the classical linear regression model (CLRM)
assumptions, the inclusion of wi in the composite error results
in a CLRM assumption violation. (For a refresher on the
CLRM assumptions, see Chapters 6 and 7.)

If you relegate the individual effects (wi) to the
error term, you create positive serial correlation in the
composite error. It occurs because individual cross-sectional
units with positive errors in one period are also likely to have
positive errors in other periods, and vice versa. As a result,
RE estimation requires feasible generalized least squares
(FGLS) rather than OLS to appropriately eliminate serial
correlation in the error term and to produce the correct
standard errors and test statistics. (To find out more about
FGLS, turn to Chapter 12.)

The serial correlation in the composite error of a RE
model is
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where and . The generalized least
squares (GLS) transformation is performed by first defining
the parameter

where T is the number of time periods in the panel and 0 ≤ λ ≤
1. Then λ is used to produce the GLS transformation

where

The transformed error term no longer contains serial
correlation.

In practice, the value of λ isn’t known, so the transformation
relies on its estimate ( ). Replacing λ with results in the
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FGLS random effects estimator. Econometric software
usually supports RE estimation by internally calculating and
automatically producing the estimated β terms.

In an RE model, your independent variables can
include individual characteristics that don’t vary over time
(such as gender and race) because they won’t be differenced
away as they are in the FE model. In addition, RE models are
also likely to include time-effect controls — added dummy
variables for each time period in which cross-sectional
observations were obtained. With time effects, you capture
anything that may affect all cross-sectional units equally, on
average, at a specific point in time.

In Figure 17-5, I illustrate how you estimate an RE
model in STATA using data on a sample of workers from the
1997 National Longitudinal Survey of Youth (NLSY).
Specifically, I’m focusing on those individuals who were
between 18 and 25 years of age at the time of the first
interview. To make sure I can use the STATA panel
econometrics tools, I first use the “xtset” command to declare
the data as panel and tag the variables that identify
cross-sectional units and time periods. I execute the “xtset”
command, and then STATA can internally perform any
calculations relevant for estimation, including adjustments for
serial correlation necessary for RE. For my subsample of
workers, I want to know the impact of education on the
natural log of wages. I use STATA to estimate OLS and RE
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models. For the RE model, I must use the “xtreg” command
and specify the “re” option instead of using the standard
“regress” or “reg” commands.

Figure 17-5: Using panel data to estimate an OLS and RE
model in STATA.

Figure 17-5 clearly shows that the impact of education is
larger with RE than with OLS. An additional year of
education increases wages by 4 percent with the OLS
estimates but increases wages by 5.7 percent with the RE
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estimates (I discuss the interpretation of coefficients with the
log-linear specification in Chapter 8). Consequently, the OLS
results underestimate the impact of education by ignoring
serial correlation in the error term.

Testing Efficiency against Consistency with the Hausman
Test

In practice, data can always surprise you with a failure of
what appear to be even the most rational assumptions.
Additionally, you may not even be able to make a strong case
for the sensibility of an assumption. A particularly good
example of this is assuming the individual fixed effects in an
RE model aren’t correlated with the independent variable(s).
For example, in a wage model, you may include an
individual’s education as an independent variable along with
other measurable human capital and specific job traits while
relegating the unobserved individual characteristics to the
error term. This approach may be sensible, but it’s also
possible that natural ability, work ethic, and other individual
fixed effects are correlated with occupational choices and the
tendency to acquire human capital.

The RE model produces more efficient estimates
than the FE model. However, if individual fixed effects are
correlated with the independent variable(s), then the RE
estimates will be biased. In that case, the FE estimates would
be preferred. The Hausman test checks the RE assumptions
and helps you decide between RE and FE estimation.
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A Hausman test examines differences in the
estimated parameters, and the result is used to determine
whether the RE and FE estimates are significantly different.
The null hypothesis of the Hausman test is that if the
assumptions of the RE model hold, then the RE model
produces the same estimated parameters as the FE model but
they’re better (meaning they have more efficiency or smaller
standard errors). If the RE assumptions don’t hold, then the
estimated parameters are significantly different and the RE
estimates contain bias. This result is the alternative hypothesis
of the Hausman test. If you fail to reject the null hypothesis in
a Hausman test, you use the RE estimates. On the other hand,
if you reject the null hypothesis in a Hausman test, using the
FE estimates as the alternative hypothesis implies that the FE
estimates are consistent.

If heteroskedasticity is present, the Hausman test
results could be misleading. The solution involves estimating
an auxiliary regression that includes all the variables from
your original model with an additional set of variables
(defined as time averages of all your time-varying
independent variables). After estimating this auxiliary
regression, you perform a joint test of significance on the
coefficients of those additional variables (I cover joint
hypothesis tests for subsets of independent variables in
Chapter 7). If you fail to reject the null hypothesis that the
coefficients are simultaneously zero, then you use the RE
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estimates. If you reject the null hypothesis, you use the FE
estimates.

In a model with one independent variable, the Hausman test
statistic is defined as

where is the estimated coefficient for the independent
variable, is the estimated variance of the coefficient, and
FE and RE subscripts denote the values were obtained,
respectively, by fixed effects and random effects estimation.
The distribution of the test statistic is chi-squared with 1
degree of freedom. The general idea can be extended to
models with more than one independent variable (p degrees
of freedom), but that requires matrix algebra. Fortunately,
STATA (and some other econometric software) allows you to
perform a Hausman test without any manual calculations or
matrix operations.

To see a Hausman test run on real data, check out
Figure 17-6. In this case, I took data from the 1997 National
Longitudinal Survey of Youth (NLSY) and used STATA’s
“xtset” command in order to classify the data as panel and tag
the variables identifying cross-sectional units and time
periods. Now I can use STATA to estimate FE and RE
models to better gauge the impact of education on the natural
log of wages. As you can see in Figure 17-6, the impact of
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education is larger with FE than with RE. A difference in the
estimated coefficients, however, isn’t enough to ensure that I
should rely on the FE estimates. I also need to take into
account the standard errors of the estimates. The Hausman
test accounts for both differences in the estimated parameters
and their standard errors. In this case, it confirms that I should
reject the assumptions of the RE model (with a large
chi-squared value and low p-value) and use the FE estimates.

528



529



Figure 17-6: Using STATA to perform a Hausman test after
estimating FE and RE models.

530



Part VII

The Part of Tens

Visit www.dummies.com/extras/
econometrics to discover ten practical applications of
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what you're spending so much time studying. You may be
intrigued — and even motivated — by what you see.

In this part . . .

Understand the core components of an econometrics
project, whether that project is a 15- to 30-page paper, a
presentation, or a combination of a paper and a presentation.

Keep the basic elements of sound econometric analysis in
mind so you can avoid committing the most common
mistakes in applied econometrics.
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Chapter 18

Ten Components of a Good Econometrics Research Project

In This Chapter

Choosing an interesting econometrics topic

Setting up your work in the appropriate context

Determining the model and complementary tests

Using the results to tell a story

In some econometrics courses, a research project may consist
of writing a paper that’s anywhere from 15 to 30 pages in
length (including references, tables, and graphs). In other
cases, your econometrics professor may expect you to give a
presentation on a research topic in combination with (or
instead of) writing a paper. No matter what the specifics of
your class assignment, you’ll probably be expected to come
up with a topic, collect data, use econometrics software to
complete the analysis, and interpret your findings. That
sounds like a lot, but this chapter breaks down the ten
components you need to include in any econometrics research
project.

Introducing Your Topic and Posing the Primary Question of
Interest

The first paragraphs of your research paper should provide an
interesting description of your topic. This section is important
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because it either captures your readers’ attention or bores
them right from the start.

Econometrics uses models and data for the purpose
of shedding light on economic puzzles. When you choose a
topic and write an explanation of it, make sure you’re clear
about the purpose of your study and how it’s important
beyond the exhibition of your quantitative skills.

The introductory section of your research project should
include the following two components, in this order:

Explanation of the topic: Provide some interesting
background information about your topic and then describe
the question that’s addressed by the research.

Description of your approach: Provide a clear
description of your population of interest and how it’s
represented in your sample data. Also, describe how you
analyze the data and why you chose the approach you
describe. Keep this description brief, because you discuss the
details of the empirical approach and specific data issues in
subsequent sections of the research project.

Discussing the Relevance and Importance of Your Topic

The introductory section of the paper should also motivate the
subject so that readers appreciate the importance of the topic
and your findings.
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The first paragraph of your introductory section
should provide a basic explanation of your research question
to spark the reader’s interest (see the preceding section), and
you should follow it up in the second paragraph with a more
profound argument for the importance and relevance of the
topic. For example, does your work challenge a long-held
belief in economics and is, therefore, grounded in theory? Is
the research question new, based on your interests, and
empirically driven? Do the results have potential policy
implications? If you can’t answer “yes” to at least one of
these questions, then you’ll need to carefully explain why the
use of econometrics is essential to addressing your research
question. This section of your research is important because it
gets readers to understand the importance of the topic and
care about your results.

Reviewing the Existing Literature

Other researchers are likely to have examined the topic of
your paper (or something closely related), so one section of
your paper should review other research on the topic. The
length of this section depends on the amount of previous
research that’s been completed on your topic, but you should
plan on about two to four pages of literature review. This
section should be placed immediately after introducing the
topic and briefly describing your contribution in the
introduction, but before you begin getting into the details of
your model and data.
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In your literature-review section, focus on
summarizing, highlighting the strengths, and pointing out the
weaknesses of prior research. Unless the goal of your work is
to replicate or update an existing study with new data, you
probably want to focus on one of the weaknesses in the prior
literature that you intend your own econometric work to
address.

In your literature review, refrain from using
Internet, newspaper, or magazine sources. Instead, keep the
focus of your reading and review of papers to those published
in scholarly journals. Save the popular press sources, such as
newspaper and magazine articles, for motivating the topic (in
the introductory section) or providing closure (in the
concluding section).

Here are some sources for finding other
econometricians’ work you can reference:

Google Scholar (scholar.google.com) lets you
search by keyword.

Social Science Research Network (www.ssrn.com)
contains a repository of working papers with the latest
research findings.
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Websites of economics journals that are likely to have
published papers on your topic may offer free articles.

Economic Journals on the web
(http://www.oswego.edu/
~economic/journals.htm) provides a list of
economic journals.

EconLit (www.aeaweb.org/econlit/) lists
sources of economic research and is available through most
electronic resources of university libraries.

Describing the Conceptual or Theoretical Framework

One of the characteristics that differentiates applied research
in econometrics from other applications of statistical analysis
is a theoretical structure supporting the empirical work. In
other words, the theoretical structure from your knowledge of
economics is emphasized in econometrics (and should justify
the connection between your dependent and independent
variables) rather than focus only on the statistical fit between
variables.

By tapping into your vast stores of common sense
and using solid economic theory, you can come to methodical
conclusions about which variables are independent and can be
used to explain your outcome of interest. When explaining the
theoretical structure of your analysis, be sure to clearly
explain the rationale behind the variables you use.
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Using a theoretical framework before estimating models (the
mathematical functions representing the relationship between
your variables) means that you should think carefully about
the process generating your outcome of interest. In particular,
you should provide justification for the variables that you’re
including in the analysis. Models that provide this rationale
are considered to be well specified (you can learn more about
model specification by turning to Chapter 8).

Explaining Your Econometric Model

After you develop the theoretical structure of your model, you
need to connect that with your empirical approach (that is,
your method of statistical analysis and observation), which is
formally known as your econometric model.

Economic theory guides your choice of dependent
and independent variables. At this point, however, you should
explain and justify any specification characteristics of the
econometric model (logs, quadratic functions, qualitative
dependent variables, and so on) that aren’t directly addressed
by the conceptual framework. This can be achieved with
intuition, scatter plots, and/or conventions derived by
researchers in previously published work. Also, be sure to
explain any notation that may not be familiar to readers and
define the elements of the model (specific variables and any
transformations).
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You can help your readers follow your analysis if
you highlight the components of the model that specifically
address your research question. If there are contesting
theories (economists may have different views about which
variables should be included in the analysis and/or how
they’re related to each other), then you should explain
whether this implies that you could end up with different
estimates of the relationship between the variables in one
model or if you should estimate more than one model.

Discussing the Estimation Method(s)

Because estimation usually assumes that certain statistical
conditions hold, going from your econometric model to
estimation may not be entirely straightforward.

Estimation problems arising from a failure of one
(or more) of the classical linear regression model (CLRM)
assumptions are common in applied econometric research. (I
introduce you to these assumptions in Chapter 6.) If the
empirical model has potential problems — such as
multicollinearity or heteroskedasticity — you should describe
the source, discuss how your results may be affected, and
explain how you’ll address the complications.

Most estimation problems have universally accepted solutions
(for example, using maximum likelihood to estimate a probit
model with a qualitative dependent variable), but you should
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plan on devoting at least one paragraph and up to a page to a
discussion of the specific estimation methods used in your
paper.

It’s usually a good idea to estimate your model
using OLS to obtain baseline results, even if you ultimately
decide to use a different estimation technique. You may find
that the results are similar and OLS is the easiest to interpret.

Providing a Detailed Description of Your Data

Your econometric results are only as good the data used to
estimate your model(s).

Give a thorough description of the data you use.
Address these issues:

How the dataset was acquired and its source(s)

The nature of the data (cross sectional, time series, or
panel)

The time span covered by the data

How and with what frequency the data was collected

The number of observations present
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Whether any observations were thrown out and why

Summary statistics (means, standard deviations, and so
on) for any variables used in your econometric model(s)

Approximately one paragraph of your research paper should
describe the content of the data and convince readers that its
use is sensible for your research question. In an additional
paragraph or two, use quantitative summary statistics to
persuade readers that the data is reliable and of high quality.

If this section of your research project adequately addresses
these questions, readers will feel more comfortable about any
subsequent conclusions that result from the econometric
analysis.

You can also use an appendix table (placed after
your references) to list variable names, define variables, and
list your data sources. This can save space in the body of your
paper.

Constructing Tables and Graphs to Display Your Results

Most econometric research projects involve estimating
numerous variations of related models. After you choose
which results are most important and relevant to addressing
your research question, you need to organize them in a
concise manner.
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A useful table typically contains estimates from
several different yet related models. It can help convince
readers that your results are robust, or it can lead into a
discussion about why they’re sensitive to changes in
specification (you can learn all about robustness and
sensitivity analysis in Chapter 8). Although concise tables of
the model estimates are no substitute for a good discussion of
the results in the text, they allow readers to see all the
variables and variations of your model while quickly
assessing the results. Many of the papers that you use in your
literature review contain good examples for structuring your
tables.

Never report your econometric results with a
display of the output from your econometrics software.
Instead, summarize your results in organized tables and/or
graphs. A number of table-generating commands are available
in STATA, including “estout,” “tabout,” and “outreg2.” The
programs to execute these functions can be downloaded into
your version of STATA by typing “findit command name” or
“help command name” on the command line.

Interpreting the Reported Results

Readers may lose track of details regarding the specification
of your econometric model, the scale of the variables, and
other aspects that influence how your results should be
interpreted.
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Reporting your econometric results is not enough;
you also need to decipher the results for your readers. The
most important element in the discussion of your results is the
evaluation of statistical significance and magnitude for the
primary variables of interest (the ones most important in
addressing the research question). Some of your variables
may be more difficult to understand (because, for example,
they’re measured in logs, or the model is nonlinear), so you
need to provide an interpretation of the coefficient estimates
for your readers. This discussion should include an
explanation of magnitude, directionality (positive/negative
effects), statistical significance, and the relationship with the
research question and theoretical hypotheses posed earlier in
your paper.

If you faced any additional issues when estimating your
econometric model, you should also discuss these problems.
Try to be specific about how your results may be affected and
why you weren’t able to address these issues with your
econometric methodology.

Summarizing What You Learned

The conclusion of your research project should synthesize
your results and explain how they’re connected to your
primary question.
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When you summarize your work, begin by
explaining what you did in your analysis. Then discuss what
you discovered and the implications of those discoveries.
Finally, express some limitations of your research (without
being too critical) and make some suggestions for future
research on the topic.

Be sure to avoid these common mistakes when
drawing your conclusions:

Focusing on variables with coefficients that are
statistically significant even when the magnitude of their
effect on the dependent variable is negligible (nearly no
effect): After you establish that a variable is statistically
significant, focus your attention on the coefficient. A
variable’s impact is important if it is both statistically
significant and associated with a significant magnitude.
Sometimes variables have coefficients that are highly
statistically significant, but there’s no economic significance
associated with the result because, in an economic sense, the
magnitude is close to zero or has no discernible impact.

Ignoring variables with statistically insignificant
coefficients: Sometimes the most important finding in a
research project is that a variable doesn’t have a statistically
significant coefficient. In some cases, economic theory or the
prevailing wisdom has suggested that a specific relationship
(positive or negative) would exist between your independent
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and dependent variables. If you discover that two variables
have no statistically significant relationship, that finding itself
is potentially important. It could suggest that the existing
theory is flawed or that there are limitations with the
empirical analysis of the research question. Either way, these
results shouldn’t be immediately dismissed.
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Chapter 19

Ten Common Mistakes in Applied Econometrics

In This Chapter

Remembering to use economic theory in econometric
analysis

Examining your analysis objectives

Using the data appropriately and avoiding unnecessary
complications

Preventing conclusions that aren’t warranted by the results

It’s no coincidence that you have to take introductory
economics, intermediate economic theory, and statistics
courses before taking econometrics courses. Avoiding
mistakes when you do econometric analysis depends on your
ability to apply knowledge you acquired before and during
your econometrics class. However, when you’re focusing on
the technical skills that you have to master to use
econometrics, you may lose sight of some of the basic
elements that characterize sound econometric analysis. You
can use this chapter’s rundown of common pitfalls to help
you improve your application of econometric analysis.

Failing to Use Your Common Sense and Knowledge of
Economic Theory

One of the characteristics that differentiate applied research in
econometrics from other applications of statistical analysis is
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the use of economic theory and common sense to motivate the
connection between the independent and dependent variables.

In econometrics, you should be able to make a
strong case for the independent variables (Xs) causing
changes in the dependent variable (Y). You need sound theory
and good common sense to justify your approach. Doing so
allows you to provide a sensible interpretation of your results
in addition to the typical measures of statistical significance
and fit.

If the relationship between your dependent and independent
variables isn’t obvious, you need to explain the causal
assumptions of your model.

Asking the Wrong Questions First

Getting obsessed with the technical details of estimating
econometric models can be easy. However, you should
always take a step back and ask yourself why you’re doing
what you’re doing. Why will others find my topic interesting
and important? Is the value of my dependent variable likely to
be influenced by my independent variables in the same
period, or should I be using lagged values for the independent
variables? Can I explain why some variables are linear, others
are in logs, and some are polynomials? You should ask
yourself these types of questions before you estimate an
econometric model, let alone before you deal with
complications such as heteroskedasticity and autocorrelation.
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Conceptual questions are more important to ask
than technical ones.

Ignoring the Work and Contributions of Others

Failing to connect your work with that of others
who have examined your research question or something
closely related to it is a serious mistake. Understanding how
others have dealt with similar issues can help you figure out
which model to use, may yield refinements in your work, and
allows readers to better understand the relevance of your
topic.

In your literature review, focus on papers or segments of
papers that are directly related to your work. Summarize the
approach, data, and findings of other researchers. Finally, be
clear about how your work fits in with what’s already been
done by others, what’s been improved, and/or how new
dimensions of the topic have been explored (I provide more
details about this component of your work in Chapter 18).

Failing to Familiarize Yourself with the Data

Students often assume that the data they’re working with is
complete for all variables and that the reported information is
accurate. You can reduce your chances of getting unwelcome
surprises in your results by doing some exploratory work that
includes descriptive statistics, line charts (for time-series
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data), frequency distributions, and even listings of some
individual data values.

A number of undesirable outcomes can result from
failing to get familiar with your analysis data. These three
examples are perhaps the most common:

Variables you thought were measured continuously
are actually in categories or groups. For example, in some
surveys, respondents are asked about their education level.
When the data is made available to researchers, this
information may be converted into years of education or
codes may be used to place individuals into education
categories (high school graduate, two-year college degree,
and so on). If it’s the latter, you need to create dummy
variables before proceeding with estimation (you can learn
how to deal with categorical data and create dummy variables
in Chapter 9).

Measurements that you believed were real values are
actually missing values. In some datasets, missing values are
given a code rather than left blank. For example, if a variable
is measuring a respondent’s age, you may see 998 or 999 for
some observations. In that case, 998 may indicate the
respondent didn’t know the answer, and 999 may indicate that
he or she refused to answer the question; you’d need to read
the data codebook to find the precise meaning of such values
(if the codebook isn’t readily available, you may need to
contact the data provider directly). In either case, the value
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should be treated as missing and recoded as such before you
perform any estimation.

Data values that appear perfectly legitimate are
actually censored values. In some surveys, respondent
confidentiality is maintained by limiting the value of certain
variables. Respondent income, for example, may be
“top-coded” at some value. If the respondent’s income is
above the limiting value, then the response is simply assigned
the limiting value (you can find out how to deal with this type
of data in your econometric analysis by reading Chapter 14).

Making It Too Complicated

The art of econometrics lies in finding the appropriate
specification or functional form to model your particular
outcome of interest. In many cases, however, theory can be
vague about the specific elements of a model’s specification.

Given the uncertainty of choosing the “perfect”
specification, many applied econometricians make the
mistake of overspecifying their models (meaning they include
numerous irrelevant variables) or favor complicated
estimation methods over more straightforward techniques. It
can result in undesirable estimator properties and difficulty
interpreting the meaning of the results.

Overspecification by including too many irrelevant variables
in a regression model increases the standard errors of your
coefficients and reduces the chances you’ll find statistical
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significance. If theory and common sense aren’t fairly
conclusive about the hypothesized effect of a variable, it’s
probably best to refrain from including it. Overspecification
can also manifest itself with complicated functional forms
that aren’t necessary to deal with theoretical concerns or data
issues. Some functions may be more difficult to interpret and
distract readers from the main point of the econometric
analysis. Consequently, additional sophistication in your
model should be introduced as necessary and not simply to
exhibit your econometric skills. (I provide more details about
overspecification in Chapter 8.)

Being Inflexible to Real-World Complications

The solutions or predictions derived by using economic
theories use logical deduction and/or mathematical proof that
usually rely on the ceteris paribus (all else constant)
assumption. The data you use to test economic hypotheses,
however, are derived from a world where agents (individuals,
firms, or what have you) are engaged with their surrounding
environment in ways that aren’t likely to satisfy the ceteris
paribus assumption because many of the variables defining
their specific circumstances vary considerably from one
observation to another.

Don’t give up on a research question or a dataset
because you can’t obtain data for all the variables that you
think are required to test a hypothesis. If you apply that
criterion, no research question is ever appropriate and no
dataset is ever good enough. In all likelihood, you’ll need to
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use some proxies (variables that approximately measure what
you’d ideally like to capture) and use econometric techniques
to deal with any estimation issues (you can obtain some tips
on how to describe your data in Chapter 19).

Typically, the data you acquire won’t contain all the
information structured in a way proposed by the theoretical
model. Use proxies that seem appropriate and that others
would find acceptable. Also, avoid forcing a particular dataset
into estimation that isn’t appropriate for the research question
— for example, using aggregate, state-level data when the
theory applies to individuals or using cross-sectional data
when a time element is part of your story.

Looking the Other Way When You See Bizarre Results

Most econometric research projects contain
estimation results for numerous variations of related models.
You want to focus on your primary variables of interest (core
variables), but make sure you examine all of your results.
That means don’t ignore unreasonable results (mostly
insignificant estimates, coefficients with the wrong sign, and
magnitudes that are too large) and proceed to reporting and
interpretation. If some results don’t pass a common-sense test,
then the statistical tests are likely to be meaningless and may
even indicate that you’ve made a mistake with your variables,
the estimation technique, or both.

Address any estimation problems that lead to perverse results
before you draw conclusions about your results. You should
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check the accuracy of your data, the completeness of the
information, the construction of your variables, and the
specification of your model (you can turn to Chapter 8 for
more on specification issues). Correcting for estimation issues
that are adversely affecting other estimates can drastically
change your conclusions.

Obsessing over Measures of Fit and Statistical Significance

After you estimate an econometric model, focus your
attention and guide the reader (if you’re writing a research
paper) to the results that are most relevant in addressing your
research question.

The importance of your results shouldn’t be
determined on the basis of fit (R-squared values) or statistical
significance alone. Sure, statistically insignificant coefficients
suggest that your independent variable isn’t likely to affect
your dependent variable. However, if the lack of a
relationship is new or unexpected, this finding may be
significant! The importance of such a finding is that it may
suggest that standard economic theory doesn’t hold.

The primary finding in many of the best papers using
econometrics involves findings of statistical insignificance.
For example, some researchers find that increases in the
minimum wage aren’t related to changes in employment,
despite the fact that many microeconomics textbooks use
minimum wages as an example of a price floor that causes
reductions in employment. In another area, some papers
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suggest that immigration doesn’t have a significant effect on
wages of native-born workers, even though the theoretical
examples in labor economics textbooks usually suggest that
wages would fall.

Forgetting about Economic Significance

You can use measures of statistical significance to determine
which variables aren’t likely to have an effect on the
dependent variable, but you can’t use them to determine
which variables have a relevant effect.

After you’ve established that a variable is
statistically significant, don’t forget to focus your attention on
the coefficient. Sometimes variables can have coefficients
that are highly statistically significant even though no
economic significance is associated with the result.

The most important element in the discussion of your results
is the evaluation of statistical significance and magnitude for
the primary variables of interest. If a variable has a
statistically significant coefficient but the magnitude is too
small to be of any importance, then you should be clear about
its lack of economic significance.

Assuming Your Results Are Robust

In most cases, economic theory allows for a considerable
amount of flexibility in determining the exact specification of
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the econometric model. You’ll want to see if minor
adjustments change your results.

Don’t assume that only one econometric model can
apply to your research question and that the results won’t
change with reasonable modifications to your specification.
You want to perform robustness (or sensitivity) analysis to
show that your model estimates aren’t sensitive (are robust) to
slight variations in specification.

The validity of your data, variable selection, and model
specification are all enhanced with successful robustness
checks. If you’re not able to show any proof of this, readers
will have doubts about your results and conclusions.
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Appendix

Statistical Tables

This appendix includes tables that are commonly used for
various hypothesis tests in econometric analysis. Hypothesis
test results rely on a comparison of an appropriate test statistic
with the critical value from a statistical table.

The Standard Normal Distribution

The standard normal table shows the right-tail probability
(density) at various points along the standard normal
distribution.
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t-Distribution
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The t table shows the value associated with each one-tail and
two-tail probability (α) for various degrees of freedom (df).
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Chi-Squared Distribution

The chi-squared table shows the value associated with each
right-tail probability (α) for various degrees of freedom (df).
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F-Distribution

The F table shows the right-tail critical F-values at the 5
percent level of significance for a specific number of degrees
of freedom in the numerator (dfn) and denominator (dfd).
Note: This table is a highly abridged version of an F table;
your econometrics textbook should have a more complete
version.

Durbin-Watson d-Statistic

The Durbin-Watson d table shows the lower and upper bound
values at the 5 percent level of significance for a specific
number of estimated coefficients (independent variables plus
the intercept, p + 1) and time periods (observations, T) in the
data.
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To access the cheat sheet specifically for this book, go to
www.dummies.com/cheatsheet/econometrics.

Find out "HOW" at Dummies.com
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